Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (09): 118-123    DOI: Q814.9
综述     
脱氢酶生物传感器研究关键技术与进展
郑晖1,2,李秋顺1,2,高广恒1,2,张利群1,2,马耀宏1,2,史建国1,2**
1.山东省生物传感器重点实验室 济南 250014
2.山东省科学院生物研究所 济南 250014
Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases
ZHENG Hui1,2,LI Qiu-shun1,2,GAO Guang-heng1,2,ZHANG Li-qun1,2,MA Yao-hong1,2,SHI Jian-guo1,2
1.Shandong Key Laboratory for Biosensors, Jinan 250014, China
2.Biology Institute, Shandong Academy of Sciences, Jinan 250014, China
 全文: PDF(436 KB)   HTML
摘要:

自然界中依赖烟酰胺类辅酶(NAD+或NADP+)的脱氢酶是氧化还原酶中最重要的一类,基于此类酶的生物传感器应用前景广阔,近年来发展迅速。构建这类传感器需要两项关键技术,即氧化型辅酶在电极表面的再生和辅酶固定化。本文介绍了辅酶电化学再生的主要方法、辅酶固定化的常见手段,以及相关的研究进展。

关键词: 辅酶再生电催化氧化辅酶固定化脱氢酶生物传感器    
Abstract:

Dehydrogenases, which use nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as the coenzyme for their catalyzed reactions, are the most important group of oxidoreductases in the nature. In recent years, Biosensors based on NAD(P)+-dependent dehydrogenases have been developed rapidly. Two key technologies are quite important for the construction of these biosensors. One is the electrochemical regeneration of oxidated form of coenzyme, and another is the coenzyme immobilization in electrode surface. This paper reviews methods to aid the electrochemical regeneration of coenzyme. Common ways of coenzyme immobilization were also introduced. In addition, research progress of the two key technologies was reviewed.

Key words: Coenzyme regeneration    Electrocatalytic oxidation    Coenzyme immobilization    Dehydrogenase    Biosensor
收稿日期: 2010-05-05 出版日期: 2010-08-25
基金资助:

山东省自然科学基金(Y2007D54)、山东省科学院博士基金(2010-004)资助项目

通讯作者: 史建国     E-mail: shijg@keylab.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑晖
李秋顺
高广恒
张利群
马耀宏
史建国

引用本文:

郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.

ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases. China Biotechnology, 2010, 30(09): 118-123.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q814.9        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I09/118

[1] 周敬丽, 聂萍萍, 郑海涛, 等. 脱氢酶电化学生物传感器的研究进展. 分析化学, 2009, 37(04): 617623. Zhou J L, Nie P P, Zheng H T, et al. Chinese Journal of Analytical Chemistry, 2009, 37(04): 617623. 
[2] Bhavana A D, Michael S F. Reactivity of Poly(anilineboronic acid) with NAD+ and NADH. Chem. Mater., 2005, 17: 29182923. 
[3] Chaubey A, Malhotra B D. Mediated biosensors. Biosens Bioelectron, 2002, 17(67): 441456. 
[4] Pandey P C, Upadhyay S, Upadhyay B C, et al. Ethanol biosensors and electrochemical oxidation of NADH. Anal Biochem, 1998, 260(2): 195203. 
[5] Senol A, Azmi T. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode. Sensors, 2010, 10: 748764. 
[6] Mecheri B, Piras L, Caminati G. LangmuirBlodgett films incorporating redox mediators for molecular recognition of NADH. Bioelectrochemistry, 2004, 63(12): 1318. 
[7] Silva R P, Serrano S H. Electrochemical oxidation of biological molecules at carbon paste electrodes pretreated in guanine solutions. J Pharm Biomed Anal, 2003, 33(4): 735744. 
[8] Gao Q, Wang W, Ma Y, et al. Electrooxidative polymerization of phenothiazine derivatives on screenprinted carbon electrode and its application to determine NADH in flow injection analysis system. Talanta, 2004, 62(3): 477482. 
[9] Bergel A, Souppe J, Comtat M. Enzymatic amplification for spectrophotometric and electrochemical assays of NAD+ and NADH. Anal Biochem, 1989, 179(2): 382388. 
[10] Sefcovicova J, Vikartovska A, Patoprsty V, et al. Offline FIA monitoring of Dsorbitol consumption during Lsorbose production using a sorbitol biosensor. Anal Chim Acta, 2009, 644(12): 6871. 
[11] Gamella M, Campuzano S, Conzuelo F, et al. Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines. Talanta, 2010, 81(3): 925933. 
[12] Woodbury R G, Wendin C, Clendenning J, et al. Construction of biosensors using a goldbinding polypeptide and a miniature integrated surface plasmon resonance sensor. Biosens Bioelectron, 1998, 13(10): 11171126. 
[13] Liu A, Watanabe T, Honma I, et al. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens Bioelectron, 2006, 22(5): 694699. 
[14] Zhu L, Zhai J, Yang R, et al. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Biosens Bioelectron, 2007, 22(11): 27682773. 
[15] Rahman M M. Highsensitive glutamate biosensor based on NADH at Lauth's violet_multiwalled carbon nanotubes composite film on gold substrates. J. Phys. Chem, 2009, 113: 15111516. 
[16] Zeng J X, Gao X H, Wei W Z, et al. Fabrication of carbon nanotubes/poly(1,2diaminobenzene) nanoporous composite via multipulse chronoamperometric electropolymerization process and its electrocatalytic property toward oxidation of NADH. Sensors and Actuators B: Chemical, 2007, 120(2): 595602. 
[17] Tasca F, Gorton L, Wagner J B, et al. Increasing amperometric biosensor sensitivity by length fractionated singlewalled carbon nanotubes. Biosens Bioelectron, 2008, 24(2): 272278. 
[18] Ouyang M, Huang J L, Lieber C M. Fundamental electronic properties and applications of singlewalled carbon nanotubes. Acc Chem Res, 2002, 35(12): 10181025. 
[19] Chakraborty S, Raj C R. Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubesbiopolymer nanocomposite. Journal of Electroanalytical Chemistry, 2007, 609(2): 155162. 
[20] Manso J, Mena M L, YáezSedeo P, et al. Alcohol dehydrogenase amperometric biosensor based on a colloidal goldcarbon nanotubes composite electrode. Electrochimica Acta, 2008, 53(11): 40074012. 
[21] Jena B K, Raj C R. Amperometric lLactate biosensor based on gold nanoparticles. Electroanalysis, 2007, 19: 816 – 822. 
[22] Cheng J, Di J, Hong J, et al. The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase solgel modified gold electrode. Talanta, 2008, 76(5): 10651069. 
[23] 吕陈秋, 姜忠义, 王姣. 烟酰型辅酶NAD(P)+和NAD(P)H再生的研究进展. 有机化学, 2004, 24(11): 13661379. Lu C Q, Jiang Z Y, Wang J. Chinese Journal of Organic Chemistry, 2004, 24(11): 13661379. 
[24] 张小里, 岑沛霖. 伴有辅酶再生的多酶反应技术进展. 化工进展, 1996, 6: 5052. Zhang X L, Cen P L. Chem Ind Eng Prog, 1996, 6: 5052. 
[25] 吴洪, 姜忠义, 黄淑芳, 等. 溶胶凝胶法包埋生物活性分子. 现代化工, 2002, 22(7): 6063. Wu H, Jiang Z Y, Huang S F, et al. Modern Chemical Industry, 2002, 22(7): 6063. 
[26] 姜忠义, 吴洪, 许松伟, 等. 溶胶凝胶固定化多酶催化二氧化碳转化为甲醇反应初探. 催化学报, 2002, 23(2): 162164. Jiang Z Y, Wu H, Xu S W, et al. Chinese Journal of Catalysis, 2002, 23(2): 162164. 
[27] 王秋雨, 钦传光, 左小佳, 等. 伴有辅酶再生的生物催化过程. 化学通报, 2009, 07: 587593. Wang Q Y, Qin C G, Zuo X J, et al. Biocatalyst System with the Regeneration of Coenzyme. 2009, 07: 587593. 
[28] Mak K K, Wollenberger U, Scheller F W, et al. An amperometric bienzyme sensor for determination of formate using cofactor regeneration. Biosens Bioelectron, 2003, 18(9): 10951100. 
[29] Suye S I, Aramoto Y, Nakamura M, et al. Electrochemical reduction of immobilized NADP+ on a polymer modified electrode with a copolymerized mediator. Enzyme and Microbial Technology, 2002, 30(2): 139144. 
[30] Suye S I, Zheng H T, Okada H, et al. Assembly of alternating polymerized mediator, polymerized coenzyme, and enzyme modified electrode by layerby layer adsorption technique. Sensors and Actuators B: Chemical, 2005, 108(12): 671675. 
[31] Gros P, Comtat M. A bioelectrochemical polypyrrolecontaining Fe(CN)6(3) interface for the design of a NADdependent reagentless biosensor. Biosens Bioelectron, 2004, 20(2): 204210. 
[32] Antiochia R, Gorton L. Development of a carbon nanotube paste electrode osmium polymermediated biosensor for determination of glucose in alcoholic beverages. Biosens Bioelectron, 2007, 22(11): 26112617. 
[33] Zhou H, Zhang Z, Yu P, et al. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenasebased electrochemical biosensors. Langmuir, 2010, 26(8): 60286032. 
[34] Rahman M M, Shiddiky M J A, Rahman M A, et al. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Analytical Biochemistry, 2009, 384(1): 159165. 
[35] Morales A, Céspedes F, Alegret S. Graphitemethacrylate biocomposite material with renewable sensing surface for reagentless amperometric biosensors based on glucose dehydrogenase. Materials Science and Engineering: C, 2000, 7(2): 99104. 
[36] Hassler B L, Kohli N, Zeikus J G, et al. Renewable dehydrogenasebased interfaces for bioelectronic applications. Langmuir, 2007, 23(13): 71277133. 
[37] Meng L, Wu P, Chen G, et al. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/singlewalled carbon nanotubes composite modified electrode. Biosens Bioelectron, 2009, 24(6): 17511756.

[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[3] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[4] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[5] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[6] 李志刚,陈宝峰,张中华,常景玲. 辅助能量物质强化环磷酸腺苷发酵合成机制 *[J]. 中国生物工程杂志, 2020, 40(1-2): 102-108.
[7] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[8] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[9] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[10] 李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.
[11] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[12] 汪企再,王鸿超,陈海琴,赵建新,张灏,陈卫,陈永泉. 过表达亚甲基四氢叶酸脱氢酶对高山被孢霉脂质合成的影响 *[J]. 中国生物工程杂志, 2018, 38(9): 12-18.
[13] 王文静,杨丽玉,刘婵娟,赵进,罗勤. 谷氨酸脱氢酶缺失对单核细胞增生李斯特菌生物被膜、毒力及胞外蛋白表达的影响 *[J]. 中国生物工程杂志, 2018, 38(9): 1-11.
[14] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[15] 刘璐,殷亮,黄飞,张勇,刘倩,冯雁. 利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *[J]. 中国生物工程杂志, 2018, 38(7): 75-82.