Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (7): 75-82    DOI: 10.13523/j.cb.20180710
技术与方法     
利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *
刘璐,殷亮,黄飞,张勇,刘倩,冯雁()
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
Construction of Intracellular Self-assembled Multienzyme Complex by SpyTag/SpyCatcher to Achieve Efficient Biosynthesis
Lu LIU,Liang YIN,Fei HUANG,Yong ZHANG,Qian LIU,Yan FENG()
State Key Laboratory of Microbial Metabolism,School of Life Sciences and Biotechnology,Shanghai Jiaotong University,Shanghai 200240,China
 全文: PDF(1241 KB)   HTML
摘要:

SpyTagr和SpyCatche可通过自发反应形成共价键,产生稳定的分子自组装体。酶分子自组装体因具有高效有序的催化特性在合成生物学和纳米技术领域具有重要的应用价值。为探索SpyTag/SpyCatcher在大肠杆菌胞内多酶复合体系形成有序自组装分子能力,将SpyTagr和SpyCatche分别与P450BM3m单加氧酶和葡萄糖脱氢酶GDH进行融合表达,以期产生具有辅酶再生循环系统、高效生物合成靛蓝分子的SpyTag/SpyCatcher双酶自组装复合体。首先,通过电泳及质谱对重组工程菌表达蛋白进行分析,证实SpyCatcher-P450BM3m与SpyTag-GDH在胞内成功形成了自组装多酶复合体;然后,系统分析不同培养条件下组装体合成靛蓝的能力。结果发现,经0.5mmol/L IPTG诱导后,菌体在16℃继续培养18h后,工程菌对吲哚(2mmol/L)与葡萄糖(4mmol/L)的全细胞催化能力最强,靛蓝产量最高达258mg/L,是未组装多酶系统的1.9倍,比P450BM3m单酶表达系统高约2.4倍;反应70min后达到反应平衡,转化率为52%。成功实现了SpyTag/SpyCatcher介导的多酶体系在大肠杆菌细胞中的自组装和高效转化体系,为胞内多酶复合物组装体的设计提供了新思路。

关键词: SpyTag/SpyCatcher自组装多酶复合物辅酶再生靛蓝    
Abstract:

SpyCatcher can form an irreversible covalent linkage to its partner SpyTag via a spontaneous isopeptide bond. To explore the potential application of SpyTag/SpyCatcher system in the self-assembly of multiple enzyme complex in Escherechia coli, SpyCatcher and SpyTag were fused with P450BM3m monooxygenase and glucose dehydrogenase(GDH), respectively. The fusion proteins co-expressed in vivo were expected to self-assemble into a double-enzyme complex with the ability of coenzyme regeneration and efficient biosynthesis of indigo. At first, the self-assembled multienzyme complex formed via SpyTag/SpyCatcher system in vivo was confirmed by SDS-PAGE and Nano-Liquid Chromatography. After that, the ability to synthesize indigo by multienzyme complex was systematically analyzed under different culture conditions. When induced at 16℃ with 0.5mmol/L IPTG, the engineered bacteria showed robust ability to catalyze indole (2mmol/L) and glucose (4mmol/L). The yield of indigo produced by self-assembled complex cells was up to 258mg/L, which was 1.9 and 2.4 times higher than that of cells with free enzymes and P450BM3m single enzyme system accordingly. The conversion rate was 52% when reaction was balanced after 70min. These findings suggest that the SpyTag/SpyCatcher system can successfully assemble multienzyme complex for efficient biosynthesis of chemicals, which provide a new idea for the design of intracellular multienzyme complex assembly.

Key words: SpyTag/SpyCatcher    Self-assembly    Multienzyme complex    Coenzyme regene-ration    Indigo
收稿日期: 2018-03-09 出版日期: 2018-08-13
ZTFLH:  Q819  
基金资助: 国家973计划(2012CB721000);国家自然科学基金国际合作与交流项目(31620103901)
通讯作者: 冯雁     E-mail: yfeng2009@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘璐
殷亮
黄飞
张勇
刘倩
冯雁

引用本文:

刘璐,殷亮,黄飞,张勇,刘倩,冯雁. 利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *[J]. 中国生物工程杂志, 2018, 38(7): 75-82.

Lu LIU,Liang YIN,Fei HUANG,Yong ZHANG,Qian LIU,Yan FENG. Construction of Intracellular Self-assembled Multienzyme Complex by SpyTag/SpyCatcher to Achieve Efficient Biosynthesis. China Biotechnology, 2018, 38(7): 75-82.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180710        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I7/75

Plasmid Bacterial strain E.coli BL21(DE3)-X
1 2 mS1) 4 5 NS2) 7 8 S3)
pACYCDuet1-mSpyTag-GDH + - + - - - - - -
pET28a-mSpyCatcher-P450BM3m - + + - - - - - -
pACYCDuet1-GDH - - - + - + - - -
pET28a-P450BM3m - - - - + + - - -
pACYCDuet1-SpyTag-GDH - - - - - - + - +
pET28a-SpyCatcher-P450BM3m - - - - - - - + +
表1  表达重组质粒的E.coli BL21 (DE3)工程菌的构建
图1  SDS-PAGE分析SpyTag-GDH和SpyCatcher-P450BM3m组装图
图2  SpyTag-GDH和SpyCatcher-P450BM3的MS/MS图谱
Protein Specific activity (U/mg)
GDH 3.076±0.42
SpyTag-GDH 3.13±0.86
P450BM3m 180.22±17.5
SpyCatcher-P450BM3m 187.83±8.2
表2  重组蛋白酶活比较
图3  IPTG浓度对靛蓝产量的影响
图4  诱导温度对靛蓝产量的影响
图5  吲哚与葡萄糖比例对靛蓝产量的影响
图6  单酶细胞和辅酶再生细胞催化合成靛蓝反应的比较
图7  E.coli BL21 (DE3)-S合成靛蓝的催化进程
[1] Hirakawa H, Haga T, Nagamune T . Artificial protein complexes for biocatalysis. Topics in Catalysis, 2012,55(16-18):1124-1137.
doi: 10.1007/s11244-012-9900-5
[2] Dueber J E, Wu G C, Malmirchegini G R , et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 2009,27(8):753.
doi: 10.1038/nbt.1557 pmid: 19648908
[3] Conrado R J, Wu G C, Boock J T , et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 2011,40(4):1879-1889.
doi: 10.1093/nar/gkr888 pmid: 22021385
[4] Zhao C, Gao X, Liu X , et al. Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris. Journal of Agricultural and Food Chemistry, 2016,64(17):3380-3385.
doi: 10.1021/acs.jafc.6b00650
[5] Kang H J, Coulibaly F, Clow F , et al. Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science, 2007,318(5856):1625-1628.
doi: 10.1126/science.1145806
[6] Kang H J, Baker E N . Intramolecular isopeptide bonds: protein crosslinks built for stress. Trends in Biochemical Sciences, 2011,36(4):229-237.
doi: 10.1016/j.tibs.2010.09.007 pmid: 21055949
[7] Chen A Y, Deng Z, Billings A N , et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014,13(5):515.
doi: 10.1038/nmat3912 pmid: 4063449
[8] Brune K D, Leneghan D B, Brian I J , et al. Plug-and-display: decoration of virus-like particles via isopeptide bonds for modular immunization. Scientific Reports, 2016,6:19234.
doi: 10.1038/srep19234
[9] Wang J, Wang Y, Wang X , et al. Enhanced thermal stability of lichenase from Bacillus subtilis 168 by SpyTag/SpyCatcher-mediated spontaneous cyclization. Biotechnology for Biofuels, 2016,9(1):79.
doi: 10.1186/s13068-016-0490-5
[10] Veggiani G, Zakeri B, Howarth M . Superglue from bacteria: unbreakable bridges for protein nanotechnology. Trends in Biotechnology, 2014,32(10):506-512.
doi: 10.1016/j.tibtech.2014.08.001 pmid: 4281928
[11] Amelung S, Nerlich A, Rohde M , et al. The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells. Cellular Microbiology, 2011,13(8):1200-1211.
doi: 10.1111/cmi.2011.13.issue-8
[12] Zakeri B, Fierer J O, Celik E , et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences, 2012,109(12):E690-E697.
doi: 10.1073/pnas.1115485109 pmid: 22366317
[13] Hagan R M, Björnsson R , McMahon S A, et al. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angewandte Chemie, 2010,122(45):8599-8603.
doi: 10.1002/anie.201004340 pmid: 20878961
[14] Li Q S, Schwaneberg U, Fischer P , et al. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry- A European Journal, 2000,6(9):1531-1536.
[15] Lundemo M T, Woodley J M . Guidelines for development and implementation of biocatalytic P450 processes. Applied Microbiology and Biotechnology, 2015,99(6):2465-2483.
doi: 10.1007/s00253-015-6403-x pmid: 25652652
[16] Beyer N, Kulig J K, Bartsch A , et al. P450 BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations. Applied Microbiology and Biotechnology, 2017,101(6):2319-2331.
doi: 10.1007/s00253-016-7993-7 pmid: 27900443
[17] Rocha-Martín J , Rivas B D L, Mu?oz R, et al. Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with in situ recycling of soluble cofactors. Chem Cat Chem, 2012,4(9):1279-1288.
[18] Omura T, Sato R . The carbon monoxide-binding pigment of liver microsomes I. evidence for its hemoprotein nature. Journal of Biological Chemistry, 1964,239(7):2370-2378.
[19] Lu Y, Mei L . Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. Journal of Industrial Microbiology & Biotechnology, 2007,34(3):247-253.
[20] Riesenberg D, Guthke R . High-cell-density cultivation of microorganisms. Applied Microbiology and Biotechnology, 1999,51(4):422-430.
doi: 10.1007/s002530051412 pmid: 10341426
[21] Ma X, Su E, Zhu Y , et al. High-level expression of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas diminuta NK703 in Escherichia coli by combined optimization strategies. Journal of Biotechnology, 2013,168(4):607-615.
doi: 10.1016/j.jbiotec.2013.08.024
[1] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[2] 张慧楠,李萌萌,文静,吴书祎,兰世建,罗忠礼. 自组装短肽R2I4R2对皮肤创伤快速修复过程的研究[J]. 中国生物工程杂志, 2018, 38(2): 7-12.
[3] 赵正德, 陈振银, 张慧楠, 龚剑萍, 许少丹, 罗忠礼. 自组装短肽水凝胶支架三维培养环境对骨髓间充质干细胞生物学特性及心肌方向分化的影响[J]. 中国生物工程杂志, 2017, 37(11): 45-51.
[4] 薛玲, 刘江宁, 张耀, 张纯, 王祺, 秦川, 刘永东, 苏志国. EV71多表位抗原亲和纯化及类病毒颗粒胞外自组装[J]. 中国生物工程杂志, 2016, 36(7): 34-40.
[5] 沈婷婷, 张光亚. 智能多肽的自组装机理及其生物学应用[J]. 中国生物工程杂志, 2014, 34(5): 87-91.
[6] 李炳娟, 李玉霞, 李北平, 凌焱, 周围, 刘刚, 张景海, 岳俊杰, 陈惠鹏. 前手性酮全细胞转化体系中甲酸脱氢酶C-端无序结构与转化效率的关系研究[J]. 中国生物工程杂志, 2013, 33(8): 1-10.
[7] 邵明香, 龚珉, 汤立达. 自组装多肽在新型药物制剂研发领域中的应用[J]. 中国生物工程杂志, 2013, 33(8): 118-126.
[8] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[9] 何丁文, 徐艳杰, 廖新根, 殷明. 自组装多肽纳米纤维支架诱导骨髓间充质干细胞定向分化[J]. 中国生物工程杂志, 2012, 32(02): 100-106.
[10] 霍润兰, 罗彦凤, 李岩, 严维维, 邢娟, 林福春, 王远亮. 材料表面化学刺激对纤连蛋白构象及细胞的影响[J]. 中国生物工程杂志, 2011, 31(7): 32-37.
[11] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.
[12] 高恩丽,仲伟佳,肖国光. 三相鼓泡塔生物反应器培养云芝菌合成漆酶[J]. 中国生物工程杂志, 2008, 28(3): 95-99.
[13] 刘康栋,赵辉,金庆辉,赵建龙. 抗体在二氧化硅表面固定及活性测定[J]. 中国生物工程杂志, 2006, 26(06): 75-77.