Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 112-116    DOI: 10.13523/j.cb.20191014
综述     
克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *
李航,王彤()
南京医科大学附属无锡市人民医院 无锡 214000
Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor
LI Hang,WANG Tong()
Wuxi People’s Hospital Affiliated to Nanjing Medical University,Wuxi 214000,China
 全文: PDF(366 KB)   HTML
摘要:

硅纳米线场效应管(silicon nanowire field-effect transistor,SiNW-FET)生物传感器已成功用于蛋白质、核酸、糖类等多种生物分子的检测,并且具有超高灵敏度、高特异性、免标记、即时响应等检测优点。但是,半导体器件德拜屏蔽效应的存在严重影响SiNW-FET生物传感器对血液样品中生物分子检测的灵敏度,尤其对于蛋白质分子的检测,并且其在很大程度上阻碍了SiNW-FET生物传感器的实际应用。目前有效克服德拜屏蔽效应并实现血液样品中蛋白质分子检测的方法主要包括稀释法、去盐法、目标蛋白提纯法、应用渗透性生物分子聚合物层法、裁剪抗体法和适配子替代法。

关键词: 硅纳米线场效应晶体管生物传感器德拜屏蔽效应    
Abstract:

Silicon nanowire field-effect transistor(SiNW-FET) biosensor has been successfully used to detect many kinds of biomolecules.such as protein,nucleic acids,carbohydrates,etc.Compared with traditional detection methods,it has the advantages that specificity,label-free,real-time and so on.But Debye screening effect of semiconductor device seriously affect the detection sensitivity of SiNW-FET biosensor to biomolecules in blood sampal,especially for protein molecule. And to a great extent,it hindered the practical application of SiNW-FET biosensor. Therefore,effectively overcoming Debye screening effect is the key for the practical application of SiNW-FET biosensor.Now,the main ways of effectively overcome debye screening effect and achieve protein detection in blood sampal are dilution,desalination,protein purification,using biomolecule-permeable polymer layer,tailoring antibody and using aptamer replace antibody.

Key words: Silicon nanowire    Field-effect transistor    Biosensor    Debye screening effect
收稿日期: 2019-01-24 出版日期: 2019-11-12
ZTFLH:  Q81  
基金资助: * 国家自然科学基金(81371683);江苏省自然科学基金(BK20160198)
通讯作者: 王彤     E-mail: aanti@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李航
王彤

引用本文:

李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.

LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor. China Biotechnology, 2019, 39(10): 112-116.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191014        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/112

原理 方法
增加德拜长度 稀释法、去盐法、目标蛋白提纯法、应用渗透性生物分子聚合物层法
缩短目标蛋白与
SiNW间距离
抗体裁剪法、适配子替代法
表1  克服德拜屏蔽效应的原理及方法
[1] Gao A, Yang X, Tong J , et al. Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. Biosens Bioelectron, 2017,91:482-488.
[2] Cui Y, Wei Q, Park H , et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001,293(5533):1289-1292.
[3] Li B R, Chen C C, Kumar U R , et al. Advances in nanowire transistors for biological analysis and cellular investigation. Analyst, 2014,139(7):1589-1608.
doi: 10.1039/c3an01861j
[4] Wang W U, Chen C, Lin K H , et al. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA, 2005,102(9):3208-3212.
[5] Wang B, Cancilla J C, Torrecilla J S , et al. Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett, 2014,14(2):933-938.
[6] Liu R, Chen R, Elthakeb A T , et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett, 2017,17(5):2757-2764.
[7] Tran D P, Pham T, Wolfrum B , et al. CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization. Materials (Basel), 2018,11(5):785.
[8] Noor M O, Krull U J . Silicon nanowires as field-effect transducers for biosensor development:a review. Anal Chim Acta, 2014,825:1-25.
[9] Gao A, Lu N, Dai P , et al. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale, 2014,6(21):13036-13042.
doi: 10.1039/c4nr03210a
[10] Gao A, Lu N, Wang Y , et al. Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep, 2016,6(1):22554.
[11] Chang K S, Chen C C, Sheu J T , et al. Detection of an uncharged steroid with a silicon nanowire fieldeffect transistor. Sensors and Actuators B:Chemical, 2009,138(1):148-153.
[12] Lee M, Palanisamy S, Zhou B H , et al. Ultrasensitive electrical detection of follicle-stimulating hormone using a functionalized silicon nanowire transistor chemosensor. ACS Appl Mater Interfaces, 2018,10(42):36120-36127.
[13] He J, Zhu J, Gong C , et al. Label-Free direct detection of miRNAs with poly-silicon nanowire biosensors. PLoS One, 2015,10(12):e145160.
[14] Schutt J, Ibarlucea B, Illing R , et al. Compact nanowire sensors probe microdroplets. Nano Lett, 2016,16(8):4991-5000.
[15] Anand A, Liu C R, Chou A C , et al. Detection of K(+) efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sens, 2017,2(1):69-79.
[16] Chiang P L, Chou T C, Wu T H , et al. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chem Asian J, 2012,7(9):2073-2079.
[17] Tran D P, Winter M A, Wolfrum B , et al. Toward intraoperative detection of disseminated tumor cells in lymph nodes with silicon nanowire field effect transistors. ACS Nano, 2016,10(2):2357-2364.
[18] Zhang G J, Ning Y . Silicon nanowire biosensor and its applications in disease diagnostics:a review. Anal Chim Acta, 2012,749:1-15.
[19] Elnathan R, Kwiat M, Pevzner A , et al. Biorecognition layer engineering:overcoming screening limitations of nanowire-based FET devices. Nano Lett, 2012,12(10):5245-5254.
[20] Huang Y W, Wu C S, Chuang C K , et al. Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem, 2013,85(16):7912-7918.
[21] Krivitsky V, Zverzhinetsky M, Patolsky F . Antigen-dissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett, 2016,16(10):6272-6281.
[22] Kim J P, Lee B Y, Hong S , et al. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal Biochem, 2008,381(2):193-198.
[23] Lloret N, Frederiksen R S, Moller T C , et al. Effects of buffer composition and dilution on nanowire field-effect biosensors. Nanotechnology, 2013,24(3):35501.
[24] Stern E, Vacic A, Rajan N K , et al. Label-free biomarker detection from whole blood. Nat Nanotechnol, 2010,5(2):138-142.
[25] Krivitsky V, Hsiung L C, Lichtenstein A , et al. Si nanowires forest-based on-chip biomolecular filtering,separation and preconcentration devices:nanowires do it all. Nano Lett, 2012,12(9):4748-4756.
[26] Gao N, Zhou W, Jiang X , et al. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett, 2015,15(3):2143-2148.
[27] Gao N, Gao T, Yang X , et al. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc Natl Acad Sci USA, 2016,113(51):14633-14638.
[28] Binz H K, Pluckthun A . Engineered proteins as specific binding reagents. Curr Opin Biotechnol, 2005,16(4):459-469.
[29] Ishikawa F N, Chang H K, Curreli M , et al. Label-free,electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 2009,3(5):1219-1224.
[30] Maehashi K, Katsura T, Kerman K , et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem, 2007,79(2):782-787.
[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[3] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[4] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[5] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[6] 温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.
[7] 王萍, 毛红菊. 纳米材料在生物医学检测中的应用[J]. 中国生物工程杂志, 2011, 31(9): 88-95.
[8] 邓汉超, 尹长城, 刘国振, 林健荣, 邓平建. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(01): 86-95.
[9] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.
[10] 尹娟,袁兴中,汤琳. 生物传感器检测纤维素酶活性及基因表达的研究进展[J]. 中国生物工程杂志, 2009, 29(01): 86-92.
[11] 欧惠超,姜浩,周宏敏,李磊珂,白林静,宋存先,罗昭锋. 五种SPR传感芯片的再生制备及其应用[J]. 中国生物工程杂志, 2009, 29(01): 44-49.
[12] 韩雪清,杨泽晓,林祥梅. 极具有应用前景的生物学检测技术-生物传感器[J]. 中国生物工程杂志, 2008, 28(5): 141-147.
[13] 李雪玲 方志俊 黄明辉 曹慧敏 赵建龙 杨梦苏. 一种葡聚糖芯片的再生方法、表征及其应用*[J]. 中国生物工程杂志, 2007, 27(8): 59-62.
[14] 武宝利, 张国梅, 高春光, 双少敏. 生物传感器的应用研究进展[J]. 中国生物工程杂志, 2004, 24(7): 65-69.
[15] 汤琳, 曾光明, 黄国和, 沈国励, 牛承岗. 辣根过氧化物酶生物传感器催化与抑制动力学研究[J]. 中国生物工程杂志, 2004, 24(11): 69-74.