Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 30-40    DOI: 10.13523/j.cb.1903028
研究报告     
基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *
郝晓婷,刘俊杰,邓玉林,张永谦()
北京理工大学生命学院 生物医药成分分离与分析北京市重点实验室 北京 100081
Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction
HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian()
Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Life of Science, Beijing Institute of Technology, Beijing 100081, China
 全文: PDF(1274 KB)   HTML
摘要:

近年来的动物实验结果表明电磁辐射的危害主要是具有神经系统毒性、诱发肿瘤和生殖系统损伤等,广域、隐蔽和累积效应是辐射的特点,除对机体进行直接损伤外,还可导致间接损伤,即通过产生活性氧(ROS)和自由基攻击生物大分子。为了迅速和简便地检测辐射毒性的大小建立了新型的辐射生物传感器,构建了携带SOS反应和氧化应激反应相关的SulARecACdaSoxR四种启动子融合经过密码子简并性优化的增强型绿色荧光蛋白(enhanced green fluorescent protein, EGFP)报告因子的工程菌传感器,并对这些生物传感器进行了γ射线辐照处理,筛选出了针对γ射线响应较好的,优选RecA工程菌传感器。利用PCR和Overlap PCR克隆获得了启动子-报告因子融合基因,并插入表达载体PUC19中,转化入宿主大肠杆菌DH5α,通过提取质粒进行双酶切和测序验证后,将构建成功的工程菌传感器首先进行化学毒性试剂刺激,一旦化学试剂刺激结果阳性便进行物理辐射刺激。结果显示,构建成功的4种工程菌传感器均对物理辐射产生应答,且随物理辐射剂量的增加(0~30Gy),绿色荧光强度逐渐增强。运用合成生物学手段,成功建立基于生物损伤修复效应和氧化应激反应的辐射生物传感器,具有制备简便、结果可视性等优点,能满足快速、广范围、在线监测的需求,在细胞毒性物、辐射环境乃至空间射线的损伤能力测定方面具有良好的应用前景。

关键词: 辐射生物传感器SOS反应氧化应激    
Abstract:

The radiation environment exists everywhere in the living space, the results of animal experiments in recent years show that the harm of electromagnetic radiation are mainly concentrated on nervous system toxicity, inducing tumors (especially brain tumors, leukemia) and reproductive system damage. Radiation exposure has the characteristics of wide-area, concealed and cumulative effect. It acts on living organisms, causing a large amount of reactive oxygen species (ROS) in cells. By-products of normal aerobic physiological metabolism in the cells can also generate free radicals, thereby causing damage to the body. In other words, radiation can not only directly act on biological molecules and cause damage to the body, but also indirectly act on the body by acting on biological water and so on to produce free radicals. In order to detect the magnitude of radiation toxicity quickly and easily, there been established radiation biosensors. Engineered bacteria sensors carrying SoxR, RecA, Cda and SulA four promoters and enhanced green fluorescent protein (EGFP) fusion gene related to SOS reaction and oxidative stress reaction were constructed, that is, the promoter-reporter system. First, the four biosensors were treated with chemical damage agents, they all expressed a large amount of green fluorescent protein after stimulation, and then γ-ray irradiation was performed. According to the treatment, the sensor with the highest sensitivity was the RecA promoter engineering bacteria sensor under radiation. The promoter-reporter fusion gene obtained by PCR and overlap PCR, and inserted into the vector PUC19, then transformed into E. coli DH5α. After double-enzyme digestion and sequencing verification, the successful engineered bacteria sensors were disposed of chemical oxidant and physical radiation. The results showed that the four engineering bacteria sensors successfully responded to the oxidant hydrogen peroxide and physical radiation, and the green fluorescence intensity gradually increased with the increase of physical radiation dose (0-30Gy). Among them, the green fluorescence of RecA engineered bacteria sensor was the most obvious after stimulation compared with the other sensors. The use of synthetic biology methods to establish physical radiation sensors based on biological effects successfully, with simple preparation, visibility of results, meeting fast, wide range, online monitoring needs, solving the problem of excessive background value in chemical sensors. It has a good application prospect in the measurement of radiation, radiation on the ground and even in the space.

Key words: Radiation    Biosensor    SOS reaction    Oxidative stress
收稿日期: 2019-03-12 出版日期: 2020-08-13
ZTFLH:  Q81  
基金资助: *国家重点研发计划资助项目(2017YFC0108504)
通讯作者: 张永谦     E-mail: zyq@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝晓婷
刘俊杰
邓玉林
张永谦

引用本文:

郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.

HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction. China Biotechnology, 2020, 40(7): 30-40.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1903028        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/30

图1  基因线路图(启动子-报告因子系统)
名称 功能描述 符号
Promoter 启动子
Regulatory sequence 核糖体结合位点
Terminator 终止子
Reporter(EGFP) 表达绿色荧光蛋白
表1  基因部件介绍
基因序列名称 引物(5' - 3')
启动子 SoxR Up: ATCTGCATGCTTACGGCTGGTCAATATGCTCGTC(含SphI酶切位点)
Down: GGACTAGTCAAACTAAAGCGCCCTTGT(含SpeI酶切位点)
RecA Up: GAAGAATTCAGCCAAAGCGCAGATGATC(EcoRI酶切位点)
Down: CGCCTTTGCTCACCATTCTAGATTTTACTCCTGTCATGCCG(含XbaI酶切位点)
SulA Up: GAAGAATTCCACAGTACTGTGCACTTTG(含EcoRI酶切位点)
Down: CGCCTTTGCTCACCATTCTAGAAATCAATCCAGCCCCTGTG(含XbaI酶切位点)
Cda Up: GAAGAATTCTGCCAGTCGG(含EcoRI酶切位点)
Down: CGCCTTTGCTCACCATTCTAGAAACACCTCTTTG(含XbaI酶切位点)
报告因子 EGFP for SOS Up: ATTCTAGAATGGTGAGCAAAGGCGAAG(含XbaI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
EGFP for SoxR Up: ATCTGCATGCTTACGGCTGGTCAATATGCTCGTC(含SphI酶切位点)
Down: GGACTAGTCAAACTAAAGCGCCCTTGT(含EcoRI酶切位点)
表2  启动子和报告基因PCR引物
图2  Overlap PCR 原理图
工程菌 引物(5' - 3')
RecA Up: GAAGAATTCAGCCAAAGCGCAGATGATC(EcoRI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
SulA Up: GAAGAATTCCACAGTACTGTGCACTTTG(EcoRI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
Cda Up: CAATGAATTCTGCCAGTCGG(EcoRI酶切位点)
Down: GTTAAGCTTTTATTTATACAGCTCATCC(含HindIII酶切位点)
SoxR Up: ATCTGCATGCTTACGGCTGGTCAATATGCTCGTC(SphI酶切位点)
Down: CCGGAATTCATATAAACGCAGAAAGGCCCACCCGAAGG(EcoRI酶切位点)
表3  Overlap PCR引物
图3  目的序列的PCR扩增
图4  转化平板生长情况及显微镜下荧光观察
图5  质粒双酶切验证
图6  DH5α大肠杆菌生长曲线的测定
图7  化学损伤试剂刺激结果
图8  物理辐射处理各生物传感器
[1] Reuter S, Gupta S C, Chaturvedi M M, et al. Oxidative stress, inflammation, and cancer: How are they linked. Free Radical Biology and Medicine, 2010,49(11):1603-1616.
doi: 10.1016/j.freeradbiomed.2010.09.006 pmid: 20840865
[2] Christman M F, Morgan R W, Jacobson F S, et al. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cef J, 1985,41(3):753-762.
[3] Vickridge E, Planchenault C, Cockram C, et al. Management of E. coli sister chromatid cohesion in response to genotoxic stress. Nature Communications, 2017,8:14618.
doi: 10.1038/ncomms14618 pmid: 28262707
[4] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence. Molecular & Cellular Biochemistry, 2004,266(1-2):37-56.
doi: 10.1023/b:mcbi.0000049134.69131.89 pmid: 15646026
[5] James A I. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Microbiology, 2013,7(11):443-454.
[6] Bouton C. Nitrosative and oxidative modulation of iron regulatory proteins. Cellular & Molecular Life Sciences Cmls, 1999,55(8-9):1043-1053.
doi: 10.1007/s000180050355 pmid: 10484662
[7] Pi J B, Zhang Q, Fu J Q, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicology and Applied Pharmacology, 2010,244(1):77-83.
doi: 10.1016/j.taap.2009.05.025 pmid: 19501608
[8] Pierrej S T, Buckingham J A, Roebucksj, et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. The Journal of Biological Chemistry, 2002,277(47):44784-44790.
doi: 10.1074/jbc.M207217200 pmid: 12237311
[9] Jomova K, Baros S, Valko M. Redox active metal-induced oxidative stress in biological systems. Transition Metal Chemistry, 2012,37(2):127-134.
doi: 10.1007/s11243-012-9583-6
[10] Klaunig J E, Wang Z, Pu X, et al. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicology and Applied Pharmacology, 2011,254(2):86-99.
doi: 10.1016/j.taap.2009.11.028 pmid: 21296097
[11] Barnes, Deborah E. DNA damage: air-breaks. Current Biology, 2002,12(7):262-264.
[12] Mccubrey J A, Lahair M M, Franklin R A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidiants & Redox Signaling, 2006,8(9):1775-1789.
[13] Kanthasamy A G, Kitazawa M, Kanthasamy A, et al. Role of proteolytic activation of protein kinase Cδ in oxidative stress-induced apoptosis. Antioxidants &Redox Signaling, 2003,5(5):609-620.
doi: 10.1089/152308603770310275 pmid: 14580317
[14] Klaunig J E, Xu Y, Isenberg J S, et al. The role of oxidative stress in chemical carcinogenesis. Annual Review of Pharmacology & Toxicology, 1998,106(1):289-295.
[15] Janion C. Some aspects of the SOS response system: a critical survey. Acta Biochimica Polonica, 2001,48(3):599-610.
pmid: 11833768
[16] Rowe L A, Degtyareva N, Doetsch P W. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2008,45(8):1167-1177.
doi: 10.1016/j.freeradbiomed.2008.07.018 pmid: 18708137
[17] Watanabe S, Kita A, Kobayashi K, et al. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proceedings of the National Academy of Sciences, 2008,105(11):4121-4126.
[18] Gaudu P, Moon N, Weiss B. Regulation of the soxRS oxidative stress regulon: reversible oxidation of the Fe±S centers of SoxR in vivo. J Biol Chem, 1997,272(8):5082-5086.
pmid: 9030573
[19] Park S J, Chung H Y, Lee J H. Rapid in vivo screening system for anti-oxidant activity using bacterial redox sensor strains. Journal of Applied Microbiology, 2010,108(4):1217-1225.
doi: 10.1111/j.1365-2672.2009.04514.x pmid: 19761460
[20] 邓名荣, 朱红惠, 郭俊. 转录因子SoxR的结构、调控机制及生理功能. 微生物学报, 2010,50(12):1575-1582.
pmid: 21365909
Deng M R, Zhu H H, Guo J. The structure, regulation mechanism and physiological function of transcription factor SoxR. Acta Microbiologica Sinica, 2010,50(12):1575-1582.
pmid: 21365909
[21] HerreraLópez E J. Lipase and phospholipase biosensors: a review. Methods Mol Biol, 2012,861(30):525-543.
[22] Touati D. Sensing and protecting against superoxide stress in Escherichia coli: how many ways are there to trigger SoxRS response. Redox Report, 2017,5(5):287-293.
doi: 10.1179/135100000101535825 pmid: 11145103
[23] Dahl R H, Zhang F, Alonsogutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013,31(11):1039-1046.
pmid: 24142050
[24] Behzadian F, Barjeste H, Hosseinkhani S, et al. Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Current Microbiology, 2011,62(2):690-696.
doi: 10.1007/s00284-010-9764-5 pmid: 20872219
[25] 郭书巧, 徐鹏, 倪万潮. 细菌的氧化应激及基因表达调控. 生物技术通报, 2008,4(3):8-11.
Guo S Q, Xu P, Ni W C. Oxidative stress in bacteria and regulation of gene expression. Biotechnology Bulletin, 2008,4(3):8-11.
[26] Tang S Y, Cirino P C. Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie, 2011,50(5):1084-1086.
pmid: 21268200
[27] Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Current Opinion in Cell Biology, 2007,19(2):238-245.
doi: 10.1016/j.ceb.2007.02.009 pmid: 17303408
[28] Harrison J C, Haber J E. Surviving the breakup: the dna damage checkpoint. Annual Review of Genetics, 2006,40(1):209-235.
doi: 10.1146/annurev.genet.40.051206.105231
[29] Dietrich J A, Shis D L, Alikhani A, et al. Transcription factor:based screens and synthetic selections for microbial small-molecule biosynthesis. Acs Synthetic Biology, 2013,2(1):47-58.
doi: 10.1021/sb300091d pmid: 23656325
[30] Liu J, Ehmsen K T, Heyer W D, et al. Presynaptic filament dynamics in homologous recombination and DNA repair. Critical Reviews in Biochemistry and Molecular Biology, 2011,46(3):240-270.
doi: 10.3109/10409238.2011.576007
[31] Tang S Y, Qian S, Akinterinwa O, et al. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013,135(27):10099-10103.
doi: 10.1021/ja402654z pmid: 23786422
[32] Farmer W R, Liao J C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnology, 2000,18(5):533-537.
doi: 10.1038/75398 pmid: 10802621
[33] Massa P E, Paniccia A, Monegal A, et al. Salmonella engineered to express CD 20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood, 2013,122(5):705-714.
doi: 10.1182/blood-2012-12-474098
[34] Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnology and Bioengineering, 1977,19(10):1535-1547.
doi: 10.1002/bit.260191010 pmid: 901931
[35] Bousse L. Whole cell biosensors. Sensors & Actuators B Chemical, 1996,34(1-3):270-275.
[36] Saeidi N, Wong C K, Lo T M, et al. Engineering microbes to sense and eradicate pseudomonas aeruginosa, a human pathogen. Molecular Systems Biology, 2011,7(1):521-521.
doi: 10.1038/msb.2011.55
[37] Waters C M, Bassler B L. Quorum sensing: cell-to-cell communication in bacteria. Cell and Developmental Biology, 2005,21(21):319-346.
doi: 10.1146/annurev.cellbio.21.012704.131001
[38] Kobayashi H, Kaern M, Araki M, et al. Programmable cells: interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences, 2004,101(22):8414-8419.
[39] Mono?ík R, Streansky M, ?turdík E. Biosensors-classification, characterization and new trends. Acta Chimica Slovaca, 2012,5(1):109-120.
doi: 10.2478/v10188-012-0017-z
[40] Chen P T, Shaw J F, Chao Y P, et al. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in bacillus subtilis. Journal of Agricultural & Food Chemistry, 2010,58(9):5392-5399.
doi: 10.1021/jf100445a pmid: 20377228
[41] Michener J K, Thodey K, Liang J C, et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metabolic Engineering, 2012,14(3):212-222.
doi: 10.1016/j.ymben.2011.09.004 pmid: 21946159
[42] Gardner T S, Cantor C R, Collins J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000,403(6767):339.
doi: 10.1038/35002131 pmid: 10659857
[43] Schoket B, Doty W A, Vincze I, et al. Increased sensitivity for determination of polycyclic aromatic hydrocarbon-DNA adducts in human DNA samples by dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA). Cancer Epidemiology Biomarkers & Prevention, 1993,2(4):349-353.
[44] Feng F, Yin J, Song M, et al. Preparation, identification and analysis of stereoisomeric anti-benzo[a]pyrene diol epoxide-deoxyguanosine adducts using phenyl liquid chromatography with diode array, fluorescence and tandem mass spectrometry detection. Journal of Chromatography A, 2008,1183(1-2):119-128.
doi: 10.1016/j.chroma.2008.01.018 pmid: 18243229
[45] 宋道军, 李红, 余增亮. N+离子注入对不同辐射敏感性微生物超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性的影响 . 生物物理学报, 1998,2(14):325-330.
Song D J, Li H, Yu Z L. Effects of N+ ion implantation on the activities of superoxide dismutase (SOD), catalase(CAT) and peroxidase (POD) in different radiation-sensitive microorganisms . Acta Biophysica Sinica, 1998,2(14):325-330.
[46] Santella R M. Immunological methods for detection of carcinogen-DNA damage in humans. Cancer Epidemiology Biomarkers & Prevention, 1999,8(3):733-739.
[47] Liao V H C, Ou K L. Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environmental Toxicology and Chemistry, 2005,24(7):1624-1631.
doi: 10.1897/04-500r.1 pmid: 16050578
[48] 宋凯. 合成生物学导论. 第2版. 北京: 科学出版社, 2010.
Song K. Introdution to synthetic biology. 2nd ed. Beijing: Science Press, 2010.
[49] Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: the LuxR - LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994,176(2):269-275.
doi: 10.1128/jb.176.2.269-275.1994 pmid: 8288518
[50] Wellhausen R, Oye K A. Intellectual property and the commons in synthetic biology: strategies to facilitate an emerging technology. Conference on Science, Technology & Innovation Policy. IEEE, 2008.
[51] Rutherford S T, Bassler B L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Technology// Science, Technology and Innovation Policy, 2007 Atlanta Conference on. IEEE, 2007.
[52] Kotula J W, Kerns S J, Shaket L A, et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(13):4838-4843.
[53] Tsao C Y, Hooshangi S, Wu H C, et al. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metabolic Engineering, 2010,12(12):291-297.
doi: 10.1016/j.ymben.2010.01.002
[54] Chen Z, Lu M, Zhuang G, et al. Enhanced bacterial biosensor for fast and sensitive detection of oxidatively DNA damaging agents. Analytical Chemistry, 2011,83(9):3248-3251.
doi: 10.1021/ac200426x
[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[3] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[4] 李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.
[5] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[6] 温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.
[7] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[8] 王艳玲, 方静, 张天佐, 李昊, 李菲菲, 陶明珍, 王晓华, 毛建平. 巴西莓和诺尼果粉对C57BL/6J小鼠抗8Gy 剂量辐射的初步研究[J]. 中国生物工程杂志, 2012, 32(04): 33-40.
[9] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[10] 邓汉超, 尹长城, 刘国振, 林健荣, 邓平建. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(01): 86-95.
[11] 裴海龙, 周光明. P14相关信号通路[J]. 中国生物工程杂志, 2010, 30(11): 75-78.
[12] 邢雅玲, 任乐宁, 陈晓娟, 陈忠斌. 人Toll样受体靶向药物研究进展[J]. 中国生物工程杂志, 2010, 30(10): 60-65.
[13] 邢雅玲 任乐宁 陈晓娟 陈忠斌. 人Toll样受体靶向药物研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[14] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.
[15] 李甜 刘冠兰 段明星 余世实 刘进元 严泽民 徐之伟. 原核表达的萝卜PHGPx对黑色素瘤B16细胞紫外辐射损伤的恢复作用[J]. 中国生物工程杂志, 2010, 30(02): 66-70.