Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (9): 12-18    DOI: 10.13523/j.cb.20180902
研究报告     
过表达亚甲基四氢叶酸脱氢酶对高山被孢霉脂质合成的影响 *
汪企再,王鸿超(),陈海琴,赵建新,张灏,陈卫,陈永泉
江南大学食品学院 无锡 214122
Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina
Qi-zai WANG,Hong-chao WANG(),Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
 全文: PDF(798 KB)   HTML
摘要:

高山被孢霉是一种富含多不饱和脂肪酸的丝状真菌,但其脂质过程中NADPH的来源还没有研究透彻。以高山被孢霉(尿嘧啶营养缺陷型)作为出发菌株,研究亚甲基四氢叶酸脱氢酶(MTHFD1)对高山被孢霉脂质合成的影响。首先构建了过表达载体pBIG2-ura5s-MTHFD1,采用根癌土壤杆菌介导转化真菌的方法,将二元表达载体转化进高山被孢霉CCFM501中,在筛选培养基SC-CS平板上进行筛选,进而得到稳定遗传MTHFD1基因的过表达菌株(MA-MTHFD1);其次提取MA-MTHFD1菌株基因组进行PCR鉴定,并结合qPCR分析结果,表明MTHFD1基因成功在高山被孢霉中实现了过量表达;最后通过对MA-MTHFD1中的脂肪酸含量、NADPH含量及NADPH合成途径中相关基因转录水平进行分析,研究MTHFD1基因过表达对脂质合成的影响。实验结果表明,过表达MTHFD1基因可以提高高山被孢霉脂质合成能力。与原养型高山被孢霉相比,MA-MTHFD1菌株中脂肪酸含量提高了40.13%,NADPH的含量提高了26.45%,而且NADPH合成途径中其他相关基因苹果酸酶(ME)和异柠檬酸脱氢酶(IDH)的转录水平也发生了上调。这一系列研究结果表明,在高山被孢霉脂质合成还原力形成中,MTHFD1基因起到了关键作用。这为解析高山被孢霉中NADPH来源及深入研究脂质合成机制,从而对其胞内脂肪酸代谢通路进行分子水平上的改建提供了一定的理论依据。

关键词: 亚甲基四氢叶酸脱氢酶高山被孢霉脂质合成NADPH    
Abstract:

Mortierella alpina is a filamentous fungus with a high polyunsaturated fatty acids content,but its sources of NADPH needed for lipid synthesis are not been studied completely. The binary vector pBIG2-ura5s-MTHFD1 was constructed for the transformation of the methylenetetrahydrofolate dehydrogenase(MTHFD1)into the M.alpina (uracil auxotrophic) strain by Agrobacterium tumefaciens-mediated transformation (ATMT). PCR analysis identified the presence of the MTHFD1 overexpression cassette in the genome, and qPCR analysis showed that the transcript levels of the MTHFD1 gene in MTHFD1 overexpression strain (MA-MTHFD1) were significantly increased compared to controls. The results showed that MTHFD1 overexpression influenced lipid synthesis significantly. In comparsion to prototrophic M. alpina, the total fatty acid(TFA)level increased by about 40.13% and NADPH level simultaneously increased by 26.45% in MA-MTHFD1. Moreover, two key enzymes ME and IDH in NADPH synthesis were up-regulated. Based on the results, MTHFD1 plays an important role in NADPH generation during lipid synthesis in M. alpina. A foundation for uncovering mechanism of lipogenesis in M. alpina was established.

Key words: MTHFD1    Mortierella alpina    Lipid synthesis    NADPH
收稿日期: 2018-03-05 出版日期: 2018-10-12
基金资助: * 国家自然科学基金青年科学基金(31400038)
通讯作者: 王鸿超     E-mail: hcwang@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪企再
王鸿超
陈海琴
赵建新
张灏
陈卫
陈永泉

引用本文:

汪企再,王鸿超,陈海琴,赵建新,张灏,陈卫,陈永泉. 过表达亚甲基四氢叶酸脱氢酶对高山被孢霉脂质合成的影响 *[J]. 中国生物工程杂志, 2018, 38(9): 12-18.

Qi-zai WANG,Hong-chao WANG,Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN. Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina. China Biotechnology, 2018, 38(9): 12-18.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180902        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I9/12

图1  高山被孢霉中亚甲基四氢叶酸脱氢酶反应
培养基 配方(1L)
LB液体培养基 10g胰蛋白胨,10g氯化钠,5g酵母粉(在该培养基配方中添加20g琼脂即为固体培养基)
SOC复苏培养基 20g 胰蛋白胨,5g 酵母粉,0.5g 氯化钠,3.6g 葡萄糖,0.95g 氯化镁,0.186g 氯化钾
YEP液体培养基 10g酵母提取物,10g 胰蛋白胨,5g 氯化钠(在该培养基配方中添加20g琼脂即为固体培养基)
MM液体培养基 1.74g磷酸氢二钾,1.37g磷酸二氢钾,0.078g氯化钙,0.002 5g七水合硫酸亚铁,0.146g氯化钠,0.49g七水合硫酸镁,0.53g硫酸铵,7.8g 2-(N-吗啡啉)乙磺酸,1.8g葡萄糖,5g丙三醇,pH为6.8
IM液体培养基 在MM液体培养基的配方中添加0.039 2g的乙酰丁香酮(AS)即可
SC固体培养基 20g 葡萄糖,5g 酵母氮源无氨基酸和硫酸铵,1.7g 硫酸铵,60mg 异亮氨酸,60mg 苯丙氨酸,60mg 亮氨酸,50mg 苏氨酸,40mg 赖氨酸,30mg 酪氨酸,20mg 精氨酸,20mg 腺嘌呤,20mg 组氨酸,10mg 甲硫氨酸,20g 琼脂,pH为6.8
SC-CS固体培养基 在SC固体培养基的配方上添加0.1g壮观霉素奇霉素(spectinomycin)和0.1g头孢噻肟抗生素(cefotaxime sodium)
Broth液体培养基 20g 葡萄糖,5g 酵母提取物,1g 磷酸氢二钾,0.25g七水硫酸镁,10g 硝酸钾,pH为6.0
GY固体培养基 20g葡萄糖,10g酵母提取物,2g硝酸钾,1g磷酸二氢钠,3g七水硫酸镁,20g琼脂,pH为6.8
GY-U培养基 在GY固体培养基的配方上添加0.1g尿嘧啶
表1  本文所用培养基
基因 引物序列
MTHFD1-F CGGGGTACCGCATGCCTGTGGCATATCAGAG
MTHFD1-R CGAGCTCTTACATGATCTTGGTCATCGC
HisproF1 CACACACAAACCTCTCTCCCACT
TrpCR1 CAAATGAACGTATCTTATCGAGATCC
MTHFD1 (qPCR) CGGCTACGCAAGGACAT
MTHFD1 (qPCR) GCCACCATCGGGTTATTC
6PGD(qPCR) AAGTTGCCTGTCCGCCATC
6PGD (qPCR) TAGTGCCAGCCGTTCTCCTT
G6PD(qPCR) CGTATGCTGGGTCTGGTTAGG
G6PD(qPCR) AGAAGGCTAGGTCTCCCGATG
ME (qPCR) CCTTGCAGGACCGTAACGAGA
ME (qPCR) CCTGGAGCGACGATAAATGGA
IDH(qPCR) CTCGTCCCTGGGTGGACAG
IDH(qPCR) CCATCAGCGGGCGTAAAA
18S rDNA CGTACTACCGATTGAATGGCTTAG
18S rDNA CCTACGGAAACCTTGTTACGACT
表2  本文所用引物
成分 取量
Power SYBR?? Green PCR Master Mix 10μl
cDNA 1μl
上、下游引物 各1μl
无酶水 7μl
表3  荧光定量PCR体系(20μl)
图2  MTHFD1基因的PCR产物(1)、重组质粒pBIG2-ura5s-MTHFD1的PCR鉴定(2)及高山被孢霉重组菌株MA-MTHFD1基因组的PCR鉴定(3)
图3  二元表达载体pBIG2-ura5s-MTHFD1的构建图示
图4  过表达MTHFD1对产NADPH相关基因转录水平的影响
图5  过表达MTHFD1对生物量的影响
菌株 脂肪酸组成(mg/mg,菌体干重)
C16:0 C18:0 C18:1 C18:2 C18:3 C20:3 C20:4
M. alpina 0.178±0.027 0.116±0.008 0.305±0.008 0.063±0.004 0.036±0.001 0.037±0.004 0.228±0.024 0.350±0.034
MA-MTHFD1 0.128±0.002 0.137±0.006 0.100±0.035 0.081±0.003 0.048±0.002 0.039±0.005 0.435±0.050 0.491±0.006
表4  高山被孢霉脂肪酸含量
图6  过表达MTHFD1对脂肪酸相对组成的影响
图7  过表达MTHFD1对NADPH含量的影响
[1] Wang H, Yang B, Hao G , et al. Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina. Microbiology-Sgm, 2011,157(Pt11):3059-3070.
doi: 10.1099/mic.0.051847-0
[2] Nisha A, Venkateswaran G . Effect of culture variables on mycelial arachidonic acid production by Mortierella alpina. Food and Bioprocess Technology, 2011,4(2):232-240.
doi: 10.1007/s11947-008-0146-y
[3] Ratledge C . Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004,86(11):807-815.
doi: 10.1016/j.biochi.2004.09.017 pmid: 15589690
[4] Maehre H K, Jensen I J, Elvevoll E O , et al. Omega-3 fatty acids and cardiovascular diseases: effects, mechanisms and dietary relevance. International Journal of Molecular Sciences, 2015,16(9):22636-22661.
doi: 10.3390/ijms160922636 pmid: 4613328
[5] Sakuradani E, Abe T, Iguchi K , et al. A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Applied Microbiology and Biotechnology, 2005,66(6):648-654.
doi: 10.1007/s00253-004-1760-x
[6] Sakuradani E, Kobayashi M, Ashikari T , et al. Identification of delta12-fatty acid desaturase 225 from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. European Journal of Biochemistry, 1999,261(3):812-820.
doi: 10.1046/j.1432-1327.1999.00333.x
[7] Kaufman S . New tetrahydrobiopterin-dependent systems. Annual Review of Nutrition, 1993,13(13):261-286.
doi: 10.1146/annurev.nu.13.070193.001401
[8] Fan J, Ye J, Kamphorst J J , et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014,510(7504):298-302.
doi: 10.1038/nature13236 pmid: 24805240
[9] Lewis C A, Parker S J, Fiske B P , et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Molecular Cell, 2014,55(2):253-263.
doi: 10.1016/j.molcel.2014.05.008 pmid: 24882210
[10] Ratledge C . The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnology Letters, 2014,36(8):1557-1568.
doi: 10.1007/s10529-014-1532-3
[11] Wang L, Chen W, Feng Y , et al. Genome characterization of the oleaginous fungus mortierella alpina. PLoS One, 2011,6(12):e28319.
doi: 10.1371/journal.pone.0028319 pmid: 3234268
[12] Pawelek P D , MacKenzie R E . Methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Photobacterium phosphoreum shares properties with a mammalian mitochondrial homologue. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1996,1296(1):47-54.
[13] Patel H, Christensen K E, Mejia N , et al. Mammalian mitochondrial methylenetetrahydrofolate dehydrogenase-cyclohydrolase derived from a trifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase. Archives of Biochemistry and Biophysics, 2002,403(1):145-148.
doi: 10.1016/S0003-9861(02)00203-5
[14] Bolusani S, Young B A, Cole N A , et al. Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. Journal of Biological Chemistry, 2011,286(7):5166-5174.
doi: 10.1074/jbc.M110.196840
[15] 王鸿超, 刘媛, 顾震南 , 等. 叶酸代谢抑制剂对小鼠骨髓基质细胞增殖和分化的影响. 食品科学, 2016,37(15):215-220.
doi: 10.7506/spkx1002-6630-201615036
Wang H C, Liu Y, Gu Z N , et al. Effect of folate metabolism inhibitor on proliferation and differentiation of mouse marrow stromal cells. Food Science, 2016,37(15):215-220.
doi: 10.7506/spkx1002-6630-201615036
[16] Chen H, Hao G, Wang L , et al. Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi. Scientific Reports, 2015,5(1):1124-1129.
[17] Bligh E G, Dyer W J . A rapid Method oftotal lipid extraction and purification. Canadian Journal of Biochemistry & Physiology, 1959,37(8):911-917.
[18] Wang H, Chen H, Hao G , et al. Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Applied and Environmental Microbiology, 2013,79(10):3225-3233.
doi: 10.1128/AEM.00238-13
[1] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[2] 王明轩, 陈海琴, 顾震南, 陈卫, 陈永泉. 高山被孢霉中Δ9脂肪酸脱饱和酶的表达、纯化和其细胞色素b5功能域的鉴定[J]. 中国生物工程杂志, 2017, 37(3): 43-50.
[3] 曾斯雨, 施天穹, 石焜, 任路静, 黄和, 纪晓俊. 高山被孢霉遗传操作系统的构建与应用[J]. 中国生物工程杂志, 2016, 36(7): 112-116.
[4] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.
[5] 王鸿超, 张陈, 陈殿宁, 乔菊园, 陈海琴, 顾震南, 张灏, 陈卫, 陈永泉. 高山被孢霉亚甲基四氢叶酸脱氢酶的克隆、表达和功能鉴定[J]. 中国生物工程杂志, 2016, 36(11): 23-29.
[6] 史海粟, 陈海琴, 顾震南, 张灏, 陈永泉, 陈卫. 高山被孢霉Δ6II-脱饱和酶的克隆、表达和功能鉴定[J]. 中国生物工程杂志, 2015, 35(12): 37-44.
[7] 郝大程1,2,肖培根2. 人细胞色素P450在大肠杆菌中的功能表达[J]. 中国生物工程杂志, 2009, 29(07): 94-101.
[8] 肖靓,刘智,朱敏,余龙江,朱路,周蓬蓬. 实时PCR分析△5脱饱和酶在花生四烯酸合成中的作用[J]. 中国生物工程杂志, 2006, 26(08): 57-61.