Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (10): 43-51    DOI: 10.13523/j.cb.2304037
综述     
代谢物衍生的非酶促翻译后修饰研究进展*
董媛媛,鲍秋雨,王德祥,温宏涛,杨行超,皖宁**(),叶慧**()
中国药科大学药物代谢动力学重点实验室 南京 210009
Advance in Metabolite-mediated Non-enzymatic Post-translational Modifications
DONG Yuan-yuan,BAO Qiu-yu,WANG De-xiang,WEN Hong-tao,YANG Xing-chao,WAN Ning**(),YE Hui**()
Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
 全文: PDF(771 KB)   HTML
摘要:

代谢物在细胞生命周期中具有重要作用,包括为细胞生命活动提供能量及合成原料、参与生物信号转导等。已有研究表明,活性代谢物可通过体内自发化学反应共价修饰蛋白,调控蛋白质结构和功能,进而影响细胞生命活动的各个环节。近年来,发展迅速的蛋白质组学技术能够捕获这类非酶促修饰的靶蛋白,继而阐明代谢物对靶蛋白功能的调控机制。由活性代谢物产生的非酶促共价修饰,分为可逆和不可逆两种类型。详细介绍代谢物衍生的非酶促翻译后修饰的形成机理,并列举蛋白质组学技术如何鉴定这类修饰进而揭示代谢调控机制的经典研究案例。

关键词: 活性代谢物非酶促共价修饰蛋白组学技术    
Abstract:

Endogenous small molecules play vital roles in the cell lifespan, such as supplying the energy and substrates for biological processes and mediating cellular communication. Previous studies have shown that some endogenous reactive molecules can non-enzymatically modify proteins via spontaneous chemical reactions, thereby regulating protein structure and functions and participating in various cellular processes. Recently, the rapid development of proteomics technology for capturing non-enzymatically modified target proteins contributes to elucidating the function of the modified target protein. This review focuses on reversible and irreversible non-enzymatic covalent modifications (NECMs) produced by active metabolites, respectively, and introduces the formation mechanism of NECMs and the application of proteomics in the discovery of new post-translational modifications (PTMs) and the elucidation of metabolites-regulated protein functions.

Key words: Reactive metabolite    Non-enzymatic covalent modifications    Proteomics
收稿日期: 2023-04-18 出版日期: 2023-11-02
ZTFLH:  Q816  
基金资助: *国家自然科学基金(82173783);江苏省自然科学基金杰出青年基金(BK20220088)
通讯作者: **电子信箱:wan_ning95@126.com;cpuyehui@cpu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董媛媛
鲍秋雨
王德祥
温宏涛
杨行超
皖宁
叶慧

引用本文:

董媛媛, 鲍秋雨, 王德祥, 温宏涛, 杨行超, 皖宁, 叶慧. 代谢物衍生的非酶促翻译后修饰研究进展*[J]. 中国生物工程杂志, 2023, 43(10): 43-51.

DONG Yuan-yuan, BAO Qiu-yu, WANG De-xiang, WEN Hong-tao, YANG Xing-chao, WAN Ning, YE Hui. Advance in Metabolite-mediated Non-enzymatic Post-translational Modifications. China Biotechnology, 2023, 43(10): 43-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2304037        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I10/43

图1  LDEs结构式及羰基化反应
图2  基于ABPP技术发现PTMs靶蛋白
图3  糖化反应
图4  琥珀酸化反应
图5  酰化反应
图6  LGSH介导的非酶促乳酰化反应
图7  多磷酸化及焦磷酸化反应
修饰类型 修饰名称 代谢物 修饰的位点 参考文献
不可逆的NECMs 羰基化修饰 脂质过氧化产物 半胱氨酸、赖氨酸和组氨酸 [11-12]
糖化修饰 糖类及糖的衍生物 赖氨酸、精氨酸 [15-16]
琥珀酸化修饰 琥珀酸 半胱氨酸 [22]
可逆的NECMs 乙酰化修饰 乙酰辅酶A、酰基磷酸酯 赖氨酸、半胱氨酸 [30]
琥珀酰化修饰 琥珀酰辅酶A 赖氨酸 [33]
其他酰化修饰 代谢物酰基辅酶A 赖氨酸 [34?-36]
乳酰化修饰 乳酰化谷胱甘肽 赖氨酸 [37]
多磷酸化修饰 多聚磷酸盐 赖氨酸 [40]
焦磷酸化修饰 二磷酸肌醇聚磷酸盐 磷酸化的丝氨酸 [4,41]
表1  代谢物衍生的非酶促共价修饰
[1] Qin W, Yang F, Wang C. Chemoproteomic profiling of protein-metabolite interactions. Current Opinion in Chemical Biology, 2020, 54: 28-36.
doi: S1367-5931(19)30122-X pmid: 31812894
[2] Yang F, Wang C. Profiling of post-translational modifications by chemical and computational proteomics. Chemical Communications, 2020, 56(88): 13506-13519.
doi: 10.1039/d0cc05447j pmid: 33084662
[3] Moellering R E, Cravatt B F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science, 2013, 341(6145): 549-553.
doi: 10.1126/science.1238327 pmid: 23908237
[4] Harmel R, Fiedler D. Features and regulation of non-enzymatic post-translational modifications. Nature Chemical Biology, 2018, 14(3): 244-252.
doi: 10.1038/nchembio.2575 pmid: 29443975
[5] Maksimovic I, David Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends in Biochemical Sciences, 2021, 46(9): 718-730.
doi: 10.1016/j.tibs.2021.04.004 pmid: 33965314
[6] Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules, 2022, 12(4): 542.
doi: 10.3390/biom12040542
[7] Wu Z J, Jankowski V, Jankowski J. Irreversible post-translational modifications: emerging cardiovascular risk factors. Molecular Aspects of Medicine, 2022, 86: 101010.
doi: 10.1016/j.mam.2021.101010
[8] Saeed M, Kausar M A, Singh R, et al. The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders. Current Protein & Peptide Science, 2020, 21(9): 846-859.
[9] Mills E L, Harmon C, Jedrychowski M P, et al. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature Metabolism, 2021, 3(5): 604-617.
doi: 10.1038/s42255-021-00389-5 pmid: 34002097
[10] Scherer H U, van der Woude D, Toes R E M. From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nature Reviews Rheumatology, 2022, 18(7): 371-383.
doi: 10.1038/s41584-022-00786-4 pmid: 35606567
[11] Chen Y, Qin W, Wang C. Chemoproteomic profiling of protein modifications by lipid-derived electrophiles. Current Opinion in Chemical Biology, 2016, 30: 37-45.
doi: S1367-5931(15)00127-1 pmid: 26625013
[12] Chen Y, Cong Y, Quan B Y, et al. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe. Redox Biology, 2017, 12: 712-718.
doi: S2213-2317(17)30206-9 pmid: 28411555
[13] Vila A, Tallman K A, Jacobs A T, et al. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chemical Research in Toxicology, 2008, 21(2): 432-444.
doi: 10.1021/tx700347w
[14] Chen Y, Liu Y, Lan T, et al. Quantitative profiling of protein carbonylations in ferroptosis by an aniline-derived probe. Journal of the American Chemical Society, 2018, 140(13): 4712-4720.
doi: 10.1021/jacs.8b01462 pmid: 29569437
[15] Ahmad S, Khan M Y, Rafi Z, et al. Oxidation, glycation and glycoxidation: the vicious cycle and lung cancer. Seminars in Cancer Biology, 2018, 49: 29-36.
doi: 10.1016/j.semcancer.2017.10.005
[16] Hellwig M, Henle T. Baking, ageing, diabetes:a short history of the Maillard reaction. Angewandte Chemie International Edition, 2014, 53(39): 10316-10329.
[17] Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology, 2019, 20: 247-260.
doi: S2213-2317(18)30737-7 pmid: 30384259
[18] Zheng Q F, Omans N D, Leicher R, et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communications, 2019, 10(1): 1289.
doi: 10.1038/s41467-019-09192-z pmid: 30894531
[19] Bollong M J, Lee G, Coukos J S, et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature, 2018, 562(7728): 600-604.
doi: 10.1038/s41586-018-0622-0
[20] Coukos J S, Lee C W, Pillai K S, et al. Widespread, reversible cysteine modification by methylglyoxal regulates metabolic enzyme function. ACS Chemical Biology, 2023, 18(1): 91-101.
doi: 10.1021/acschembio.2c00727 pmid: 36562291
[21] Sanghvi V R, Leibold J, Mina M, et al. The oncogenic action of NRF 2 depends on de-glycation by fructosamine-3-kinase. Cell, 2019, 178(4): 807-819, e21.
doi: S0092-8674(19)30830-X pmid: 31398338
[22] Alderson N L, Wang Y P, Blatnik M, et al. S-(2-succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Archives of Biochemistry and Biophysics, 2006, 450(1): 1-8.
pmid: 16624247
[23] Cheng J, Liu Y, Yan J X, et al. Fumarate suppresses B-cell activation and function through direct inactivation of LYN. Nature Chemical Biology, 2022, 18(9): 954-962.
doi: 10.1038/s41589-022-01052-0 pmid: 35710616
[24] Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis. Science, 2020, 369(6511): 1633-1637.
doi: 10.1126/science.abb9818 pmid: 32820063
[25] Narita T, Weinert B T, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 2019, 20(3): 156-174.
doi: 10.1038/s41580-018-0081-3 pmid: 30467427
[26] Wagner G R, Hirschey M D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Molecular Cell, 2014, 54(1): 5-16.
doi: S1097-2765(14)00260-3 pmid: 24725594
[27] James A M, Hoogewijs K, Logan A, et al. Non-enzymatic N-acetylation of lysine residues by acetyl CoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Reports, 2017, 18(9): 2105-2112.
doi: 10.1016/j.celrep.2017.02.018
[28] Lin H N, Su X Y, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chemical Biology, 2012, 7(6): 947-960.
doi: 10.1021/cb3001793 pmid: 22571489
[29] Choudhary C, Weinert B T, Nishida Y, et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology, 2014, 15(8): 536-550.
doi: 10.1038/nrm3841 pmid: 25053359
[30] Weinert B T, Iesmantavicius V, Moustafa T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Molecular Systems Biology, 2014, 10(1): 716.
doi: 10.1002/msb.134766 pmid: 24489116
[31] Wagner G R, Payne R M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. The Journal of Biological Chemistry, 2013, 288(40): 29036-29045.
doi: 10.1074/jbc.M113.486753
[32] Schastnaya E, Doubleday P F, Maurer L, et al. Non-enzymatic acetylation inhibits glycolytic enzymes in Escherichia coli. Cell Reports, 2023, 42(1): 111950.
doi: 10.1016/j.celrep.2022.111950
[33] Zhang Z H, Tan M J, Xie Z Y, et al. Identification of lysine succinylation as a new post-translational modification. Nature Chemical Biology, 2011, 7(1): 58-63.
doi: 10.1038/nchembio.495 pmid: 21151122
[34] Peng C, Lu Z K, Xie Z Y, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Molecular & Cellular Proteomics, 2011, 10(12): M111.012658.
[35] Tan M J, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6): 1016-1028.
doi: 10.1016/j.cell.2011.08.008 pmid: 21925322
[36] Tan M J, Peng C, Anderson K A, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism, 2014, 19(4): 605-617.
doi: 10.1016/j.cmet.2014.03.014 pmid: 24703693
[37] Gaffney D O, Jennings E Q, Anderson C C, et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chemical Biology, 2020, 27(2): 206-213, e6.
doi: S2451-9456(19)30363-0 pmid: 31767537
[38] Park J, Chen Y, Tishkoff D X, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Molecular Cell, 2013, 50(6): 919-930.
doi: 10.1016/j.molcel.2013.06.001 pmid: 23806337
[39] Wang F, Wang K, Xu W, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Reports, 2017, 19(11): 2331-2344.
doi: S2211-1247(17)30722-2 pmid: 28614718
[40] Azevedo C, Livermore T, Saiardi A. Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Molecular Cell, 2015, 58(1): 71-82.
doi: 10.1016/j.molcel.2015.02.010 pmid: 25773596
[41] Penkert M, Yates L M, Schümann M, et al. Unambiguous identification of serine and threonine pyrophosphorylation using neutral-loss-triggered electron-transfer/higher-energy collision dissociation. Analytical Chemistry, 2017, 89(6): 3672-3680.
doi: 10.1021/acs.analchem.6b05095 pmid: 28218834
[42] Morgan J, Singh A, Kurz L, et al. Pyrophosphoproteomics: extensive protein pyrophosphorylation revealed in human cell lines. bioRxiv, 2022. DOI: 10.1101/2022.11.11.516170.
doi: 10.1101/2022.11.11.516170
[43] Chanduri M, Rai A, Malla A B, et al. Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. The Biochemical Journal, 2016, 473(19): 3031-3047.
doi: 10.1042/BCJ20160610
[44] Chalkley R J. When target-decoy false discovery rate estimations are inaccurate and how to spot instances. Journal of Proteome Research, 2013, 12(2): 1062-1064.
doi: 10.1021/pr301063v pmid: 23298186
[45] Carbonara K, Andonovski M, Coorssen J R. Proteomes are of proteoforms: embracing the complexity. Proteomes, 2021, 9(3): 38.
doi: 10.3390/proteomes9030038
[1] 徐颖, 王雪, 王倩倩, 朱云平, 贾辰熙. 小鼠垂体瘤细胞冷暴露后蛋白质甲基化修饰分析*[J]. 中国生物工程杂志, 2023, 43(7): 12-22.
[2] 孟奂, 粟乙梵, 王洒, 张淑雯, 郑永祥, 余蓉, 张纯. 重组白蛋白结合肽融合人白介素-11的原核可溶表达、纯化、表征及初步活性评价*[J]. 中国生物工程杂志, 2023, 43(7): 44-52.
[3] 卢鼎元, 王启彬, 刘护, 李春. 计算模拟在蛋白组装研究中的应用*[J]. 中国生物工程杂志, 2023, 43(7): 60-76.
[4] 冯宏盛, 金行, 高永宇, 鲜钰涵, 李海洋, 杨思宇, 贾爱明, 高凤山. 免疫信息学在表位疫苗研发中的应用与研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 88-100.
[5] 刘少金, 窦树珍, 王俊姝, 吴海明, 邹慧. 靶向蛋白降解药物市场分析及建议*[J]. 中国生物工程杂志, 2023, 43(2/3): 190-200.
[6] 靳倩, 时梦, 刘占彪, 张毅, 朱思庆, 石晶晶, 宗星星, 陈学军, 李丽琴. 亚急性梭曼染毒豚鼠颈部脊髓差异表达蛋白分析[J]. 中国生物工程杂志, 2023, 43(2/3): 64-74.
[7] 王宇航, 陈学明, 刘俗生, 阮志军, 张敏, 宋春丽, 尹丰, 李子刚. 一种多肽固相合成方法与纯化策略研究[J]. 中国生物工程杂志, 2023, 43(1): 35-41.
[8] 汪琨,赵福运,徐云飞,袁小凤,赵伟春. 茄病镰刀菌单克隆抗体的制备及胶体金免疫层析试纸条的研发*[J]. 中国生物工程杂志, 2022, 42(7): 54-61.
[9] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[10] 陈阳, 刘彤, 张佳琦, 廖化新, 林跃智, 王晓钧, 王亚玉. 基于单个B细胞抗体基因扩增技术筛选马IgG1单克隆抗体*[J]. 中国生物工程杂志, 2022, 42(4): 17-23.
[11] 李开通, 刘金青, 蔡望伟, 肖曼, 沈倍奋, 王晶, 冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[12] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[13] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[14] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[15] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.