Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 14-22    DOI: 10.13523/j.cb.2105028
研究报告     
基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*
邓蕊1,2,3,曾佳利1,2,卢雪梅1,2,**()
1 广东药科大学生命科学与生物制药学院 广州 510006
2 广东省生物活性药物研究重点实验室 广州 510006
3 广东药科大学药学院 广州 510006
Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin
DENG Rui1,2,3,ZENG Jia-li1,2,LU Xue-mei1,2,**()
1 School of Lif Science and Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China
2 Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,Guangzhou 510006,China
3 School of Pharmacy,Guangdong Pharmaceutical University, Guangzhou 510006,China
 全文: PDF(2710 KB)   HTML
摘要:

目的:分析家蝇抗菌肽(Musca domestica cecropin,Mdc)的结构,并对其衍生肽的抗肿瘤活性进行筛选,以期找到高效、经济的抗肿瘤候选小分子肽。方法:采用生物信息学相关软件对抗菌肽Mdc的理化性质和二级结构等进行分析;MTT法测定小分子衍生肽对10种不同肿瘤细胞株的抑制作用,并测定Mdc和衍生肽对正常细胞的毒性作用;溶血实验检测Mdc和衍生肽的溶血性。结果:在抗菌肽Mdc结构分析的基础上,设计了5种衍生肽M1-6、M1-7、M1-8、M9-21、M27-39;MTT结果显示5种衍生肽对特定肿瘤细胞株具有不同程度的抑制作用,但对正常细胞无明显细胞毒性;并且5种衍生肽在一定浓度范围内无溶血现象。结论:成功筛选出了具有相应抗肿瘤活性的小分子肽,其中M27-39、M1-8和M1-7有望成为有前途的抗肿瘤候选小分子肽。

关键词: 抗菌肽家蝇天蚕素抗肿瘤活性筛选构效关系    
Abstract:

In order to find more effective, simpler, less toxic, and more stable small peptides, Musca domestica cecropin (Mdc), a housefly antimicrobial peptide cloned in our laboratory, was used to design five derived peptides and analyze the specific structure and anticancer activities of them. Based on the analysis results of Mdc, five peptides derived from the conserved sequence of Mdc were redesigned:M1-6,M1-7,M1-8,M9-21 and M27-39. Bioinformatics tools were used to predict the physical and chemical properties and secondary structure. Proliferation effects of the derived peptides on ten different cancer cell lines and the toxic effects of them on normal cells were determined by MTT assay. The safety of the five polypeptides was verified by hemolysis test and normal cytotoxicity test. Five kinds of derived peptides were designed with Mdc as template, and they all had inhibitory effects on different cancer cells. M1-7, M1-8 and M27-39 showed good activity to several kinds of cancer cells and low hemolytic activity to human erythrocytes. Interestingly, M1-7 had significant inhibitory effect on PC-12 cells, M1-8 had effective biological activity on HepG2 cells, and M27-39 had obvious inhibitory effect on HCT116 cells. The small molecular peptides with corresponding anticancer activity were successfully screened, among which M1-7, M1-8 and M27-39 have obvious specific anticancer activities and may become promising anticancer agents.

Key words: Antimicrobial peptide    Musca domestica cecropin    Anti-tumor activity screening    Structure-activity relationship
收稿日期: 2021-05-17 出版日期: 2021-12-01
ZTFLH:  Q816  
基金资助: * 国家重点研发计划(2018YFC1603900);国家自然科学基金(32070509);国家自然科学基金(31501894);广东省基础与应用基础研究专项(2018A030313461)
通讯作者: 卢雪梅     E-mail: luxuemei@gdpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓蕊
曾佳利
卢雪梅

引用本文:

邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.

DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin. China Biotechnology, 2021, 41(11): 14-22.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105028        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/14

衍生肽 序列
Mdc GWLKKIGKKIERVGQHTRDATIQTIGVAQQAANVAATLKG
M1-6 GWLKKI
M1-7 GWLKKIG
M1-8 GWLKKIGK
M9-21 KIERVGQHTRDAT
M27-39 VAQQAANVAATLK
表1  Mdc及5种衍生肽的序列
衍生肽 预测半衰期/h 脂肪族指数 不稳定指数 GRAVY指数 理论等电点 分子量
Mdc 30 95.25 14.98 -0.323 10.56 4257.9
M1-6 30 130.00 21.17 -0.133 10.00 743.9
M1-7 30 111.43 19.57 -0.171 10.00 801.0
M1-8 30 97.50 7.76 -0.637 10.30 929.1
M9-21 1.3 60.00 24.17 -1.377 8.75 1 510.6
M27-39 100 113.08 17.52 0.469 8.72 1 284.4
表2  Mdc及5种衍生肽的理化特性分析结果
图1  ExPASY对Mdc的序列分析
图2  PyMol模拟分析Mdc及5种衍生肽的二级结构
图3  螺旋轮图分析Mdc及5种衍生肽的亲疏水性
图4  ExPASY对Mdc的疏水性分析
图5  5种衍生肽对不同肿瘤细胞增殖的影响
图6  Mdc及5种衍生肽对正常细胞Chang Liver、NCM460细胞毒性研究
图7  不同浓度Mdc及5种衍生肽对人源和鼠源红细胞溶血的影响
[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71(3):209-249.
doi: 10.3322/caac.v71.3
[2] Al-Benna S, Shai Y, Jacobsen F, et al. Oncolytic activities of host defense peptides. International Journal of Molecular Sciences, 2011, 12(11):8027-8051.
doi: 10.3390/ijms12118027 pmid: 22174648
[3] Shabalala S, Muller C J F, Louw J, et al. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sciences, 2017, 180:160-170.
doi: S0024-3205(17)30206-0 pmid: 28478263
[4] Zasloff M. Antimicrobial peptides of multicellular organisms: My perspective. Adv Exp Med Biol, 2019, 1117:3-6. DOI: 10.1007/978-981-13-3588-4_1.
doi: 10.1007/978-981-13-3588-4_1
[5] Patel S, Akhtar N. Antimicrobial peptides (AMPs): The quintessential ‘offense and defense’ molecules are more than antimicrobials. Biomedicine & Pharmacotherapy, 2017, 95:1276-1283.
doi: 10.1016/j.biopha.2017.09.042
[6] Kardani K, Bolhassani A. Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents. Immunotherapy, 2021, 13(8):669-684.
doi: 10.2217/imt-2020-0312
[7] Tornesello A L, Borrelli A, Buonaguro L, et al. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules, 2020, 25(12):2850.
doi: 10.3390/molecules25122850
[8] Otvos L. Host defense peptides and cancer; perspectives on research design and outcomes. Protein and Peptide Letters, 2017, 24(10):879-886.
[9] Melvin J A, Lashua L P, Kiedrowski M R, et al. Simultaneous antibiofilm and antiviral activities of an engineered antimicrobial peptide during virus-bacterium coinfection. Msphere, 2016, 1(3):e00083-00016. DOI: 10.1128/msphere.00083-16.
doi: 10.1128/msphere.00083-16
[10] Tripathi A K, Kumari T, Tandon A, et al. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Acta Biomaterialia, 2017, 57:170-186.
doi: S1742-7061(17)30287-8 pmid: 28483698
[11] Jin X B, Mei H F, Li X B, et al. Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochimica et Biophysica Sinica, 2010, 42(4):259-265.
doi: 10.1093/abbs/gmq021
[12] Lu X, Shen J, Jin X, et al. Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli. Applied Microbiology and Biotechnology, 2012, 95(4):939-945.
doi: 10.1007/s00253-011-3793-2 pmid: 22202966
[13] Lu X M, Jin X B, Wang J, et al. Antihepatitis B virus activity of a protein-enriched fraction from housefly (Musca domestica) in a stable HBV-producing cell line. The Scientific World Journal, 2014, 2014:389560.
[14] Chu F J, Jin X B, Zhu J Y. Housefly maggots (Musca domestica) protein-enriched fraction/extracts (PE) inhibit lipopolysaccharide-induced atherosclerosis pro-inflammatory responses. Journal of Atherosclerosis and Thrombosis, 2011, 18(4):282-290.
doi: 10.5551/jat.5991
[15] Jin X B, Wang Y J, Liang L L, et al. Cecropin suppresses human hepatocellular carcinoma BEL-7402 cell growth and survival in vivo without side-toxicity. Asian Pacific Journal of Cancer Prevention, 2014, 15(13):5433-5436.
doi: 10.7314/APJCP.2014.15.13.5433
[16] Lu X M, Jin X B, Zhu J Y. Flow cytometry and electron microscopy study of Staphylococcus aureus and Escherichia coli treated with mdc-hly. Microscopy and Microanalysis, 2015, 21(2):351-357.
[17] Jin X B, Mei H F, Pu Q H, et al. Effects of Musca domestica cecropin on the adhesion and migration of human hepatocellular carcinoma BEL-7402 cells. Biological & Pharmaceutical Bulletin, 2013, 36(6):938-943.
[18] Li J, Zhou T, Zhao F T. Inhibitory effect of sodium houttuyfonate on synovial proliferation in vitro in cells from a patient with rheumatoid arthritis. Experimental and Therapeutic Medicine, 2014, 7(6):1639-1642.
doi: 10.3892/etm.2014.1636
[19] Fischer D, Li Y X, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24(7):1121-1131.
pmid: 12527253
[20] Ahn H S, Cho W, Kang S H, et al. Design and synthesis of novel antimicrobial peptides on the basis of α helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study. Peptides, 2006, 27(4):640-648.
doi: 10.1016/j.peptides.2005.08.016
[21] Wang K R, Zhang B Z, Zhang W, et al. Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide Polybia-MPI. Peptides, 2008, 29(6):963-968.
doi: 10.1016/j.peptides.2008.01.015
[22] Cha-Molstad H, Yu J E, Feng Z W, et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nature Communications, 2017, 8(1):102.
doi: 10.1038/s41467-017-00085-7 pmid: 28740232
[1] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[2] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[3] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[4] 杨静,贾如涵,李文慧,石大林,邵明洋,韩跃武. 抗菌肽改良设计及抗炎作用的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 57-61.
[5] 徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.
[6] 温赛, 刘怀然, 韩煦, 李天, 邢旋. 综述人工合成型抗菌肽及其药学应用研究进展[J]. 中国生物工程杂志, 2016, 36(8): 89-98.
[7] 刘晓明, 姜宁, 张爱忠, 蔡鹏. 杂合抗菌肽在毕赤酵母中的表达及其活性测定[J]. 中国生物工程杂志, 2016, 36(2): 81-89.
[8] 巫春旭, 卢雪梅, 金小宝, 朱家勇. 天蚕素类抗菌肽分子设计研究进展[J]. 中国生物工程杂志, 2016, 36(2): 96-100.
[9] 童良琴, 曲亚军, 陈敏. 乳酸菌胞外多糖的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 85-91.
[10] 陈洁梅, 张灿辉, 艾田. 解淀粉芽孢杆菌KN-BL-1及其发酵豆粕产抗菌肽类物质的研究[J]. 中国生物工程杂志, 2014, 34(10): 61-66.
[11] 武如娟, 张日俊. 杂合抗菌肽设计及生物学活性的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 94-100.
[12] 陈宇婷, 王长海, 严秀文, 黎军胜. 抗菌肽的设计及其应用[J]. 中国生物工程杂志, 2013, 33(7): 97-102.
[13] 明飞平, 杨军, 朱进美, 邝哲师, 李华周, 夏枫耿, 叶明强, 王候光, 赵祥杰, 黄志丰, 蔡海明, 施巨清, 马苗鹏, 张玲华. 5’非翻译区序列改建提高抗菌肽PR39表达[J]. 中国生物工程杂志, 2013, 33(12): 86-91.
[14] 陈武, 黎定军, 丁彦, 张旭, 肖启明, 周清明. 病原微生物对抗菌肽抗性机制的研究进展[J]. 中国生物工程杂志, 2012, 32(05): 97-106.
[15] 舒梅, 许杨, 徐熙, 涂追. 两种水生动物抗菌肽的原核表达及活性分析[J]. 中国生物工程杂志, 2011, 31(02): 56-61.