Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (10): 52-61    DOI: 10.13523/j.cb.2303027
综述     
基于环介导等温扩增的微流控芯片检测技术研究进展*
李林岳1,**,袁嘉康1,**,李任峰1,***(),庞俊增1,秦保亮2,周艳琳3,王自良1,***()
1 河南科技学院动物科技学院 河南省高校动物疫病防控创新团队 新乡 453003
2 新乡市动物疫病预防控制中心 新乡 453003
3 新乡医学院三全学院 新乡 453003
Research Progress of Microfluidic Chip Detection Technology Based on Loop-mediated Isothermal Amplification
LI Lin-yue1,**,YUAN Jia-kang1,**,LI Ren-feng1,***(),PANG Jun-zeng1,QIN Bao-liang2,ZHOU Yan-lin3,WANG Zi-liang1,***()
1 College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Innovative Research Team for Animal Disease Prevention and Control in Universities of Henan Province, Xinxiang 453003, China
2 Animal Disease Prevention and Control Center of Xinxiang City, Xinxiang 453003, China
3 Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
 全文: PDF(1221 KB)   HTML
摘要:

基于环介导等温扩增(loop-mediated isothermal amplification,LAMP)的微流控芯片是一种新型核酸检测方法。该方法能够将核酸提取、等温扩增和反应结果集成在厘米级的芯片上,具有灵敏度高、特异性强、不易污染等特点,并且可以实现“样品-答案”的快速检测,已成为当前检测领域的研究热点。综述LAMP的反应原理、微流控芯片的种类、LAMP微流控芯片在病原微生物和肿瘤检测中的应用,并分析LAMP微流控芯片目前存在的问题及未来发展前景,以进一步拓展对新型检测技术的认识,加快其在现场快速检测中的推广和应用。

关键词: 环介导等温扩增微流控芯片病原检测    
Abstract:

The microfluidic chip based on loop-mediated isothermal amplification (LAMP) is a novel nucleic acid detection method that integrates nucleic acid extraction, LAMP reaction and signal display on a chip of several centimeters. It has advantages such as high sensitivity, strong specificity, convenient and fast operation, and a detection process not easy to be contaminated and can realize the detection process from sample to answer. It has become a hot spot in the current detection field. In this paper, the principle of LAMP reaction, the types of microfluidic chips and the research progress of LAMP microfluidic chips in the detection of pathogens and tumors are reviewed, and the existing problems and future development prospects of LAMP microfluidic chips are analyzed. This review may help further expand the understanding of new detection technologies and accelerate their application in on-site rapid detection.

Key words: Loop-mediated isothermal amplification (LAMP)    Microfluidic chip    Examination of pathogen
收稿日期: 2023-03-10 出版日期: 2023-11-02
ZTFLH:  Q78  
基金资助: *河南省重点研发与推广专项(科技攻关)(212102110098);河南省重点研发与推广专项(科技攻关)(232102310011)
通讯作者: ***电子信箱:lirenfeng@sina.com;wangziliang66@126.com   
作者简介: **具有同等贡献
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李林岳
袁嘉康
李任峰
庞俊增
秦保亮
周艳琳
王自良

引用本文:

李林岳, 袁嘉康, 李任峰, 庞俊增, 秦保亮, 周艳琳, 王自良. 基于环介导等温扩增的微流控芯片检测技术研究进展*[J]. 中国生物工程杂志, 2023, 43(10): 52-61.

LI Lin-yue, YUAN Jia-kang, LI Ren-feng, PANG Jun-zeng, QIN Bao-liang, ZHOU Yan-lin, WANG Zi-liang. Research Progress of Microfluidic Chip Detection Technology Based on Loop-mediated Isothermal Amplification. China Biotechnology, 2023, 43(10): 52-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2303027        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I10/52

图1  LAMP反应过程
性能指标 玻璃 PDMS PMMA PC 纸基材料
生物相容性 较好 易非特异性吸附 较好 较好 较好
光学特性 较好 较好 较好 紫外吸收较差 检测背景低
导热系数 较好
电绝缘性 较好 较好 较好 较好 较好
热稳定性 -80~860℃ -50~200℃ -80~90℃ -60~120℃ 试剂受热易蒸发
材料成本 适中 适中 适中 适中
加工难度 较难 适中 适中 适中 容易
表1  微流控芯片常用材料及其性能
图2  焦磷酸镁沉淀生成原理
特点 羟基萘酚蓝 钙黄绿素 SYBR Green I 甲酚红 中性红
补充试剂 锰离子
指示物质 镁离子 锰离子、镁离子 双链DNA 氢离子 氢离子
使用浓度 120 μmol/L 50 μmol/L 1 × 120 μmol/L 270 μmol/L
颜色变化 紫罗兰色-天蓝色 橙黄色-草绿色,有荧光 橙色-黄绿素,有荧光 紫红色-黄色 橙黄色-紫红色
反应抑制作用 轻微 严重
加入时间 反应前 反应前 反应后 反应前 反应前
观察难度 颜色对比度低 可见光下颜色对比度低,
需紫外光源
可见光下颜色对比度低,
需紫外光源
容易 容易
表2  常见LAMP指示剂的特性
图3  免疫层析试纸法原理
病原和肿瘤 检测速度 灵敏度 检测样本数 检出样本数 符合率/% 多重检测 参考文献
细菌 金黄色葡萄球菌 40 min 30 CFU/反应 - - - [42]
副溶血性弧菌 65 min 10个细胞/反应 - - - [43]
沙门氏菌 65 min 10个细胞/反应 - - - [43]
大肠杆菌 65 min 10个细胞/反应 - - - [43]
病毒 猪流行腹泻病毒 30 min 10拷贝/μL 11 5 100 [44]
新型冠状病毒 60 min 0.5拷贝/μL 12 12 100 [45]
人类免疫缺陷病毒 50 min 2拷贝/μL 20 20 100 [46]
埃博拉病毒 50 min 10拷贝/μL - - - [47]
寨卡病毒 60 min 10拷贝/反应 5 5 100 [48]
登革热病毒 60 min 10拷贝/反应 5 5 100 [48]
猪瘟病毒 60 min 3.2 × 102拷贝/反应 232 218 94 [49]
寄生虫 疟原虫 50 min 100 fg /反应 6 6 100 [51]
血吸虫 90 min 2 × 10-2 fg /μL 200 200 100 [53]
布氏锥虫 60 min 40拷贝/反应 - - - [54]
肿瘤 骨髓增殖性肿瘤 60 min 1%~3%的突变基因 30 27 90 [55]
肺癌 45 min 10拷贝/反应 86 86 - [56]
宫颈癌 90 min 5~50拷贝/μL 41 35 100 [57]
前列腺癌 75 min 0.34 fg/μL - - - [58]
表3  LAMP微流控芯片在病原和肿瘤检测中的应用
[1] Soroka M, Wasowicz B, Rymaszewska A. Loop-mediated isothermal amplification (LAMP): the better sibling of PCR? Cells, 2021, 10(8): 1931-1950.
doi: 10.3390/cells10081931
[2] Leonardo S, Toldrà A, Campàs M. Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring. Sensors (Basel, Switzerland), 2021, 21(2): 602.
doi: 10.3390/s21020602
[3] Lobato I M, O’Sullivan C K. Recombinase polymerase amplification: basics, applications and recent advances. Trends in Analytical Chemistry, 2018, 98(1): 19-35.
doi: 10.1016/j.trac.2017.10.015
[4] Pumford E A, Lu J K, Spaczai I, et al. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosensors and Bioelectronics, 2020, 170: 112674.
doi: 10.1016/j.bios.2020.112674
[5] Xu G L, Hu L, Zhong H Y, et al. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Scientific Reports, 2012, 2: 246.
doi: 10.1038/srep00246 pmid: 22355758
[6] Asiello P J, Baeumner A J. Miniaturized isothermal nucleic acid amplification, a review. Lab on a Chip, 2011, 11(8): 1420-1430.
doi: 10.1039/c0lc00666a pmid: 21387067
[7] Boonbanjong P, Treerattrakoon K, Waiwinya W, et al. Isothermal amplification technology for disease diagnosis. Biosensors, 2022, 12(9): 6777-692.
[8] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12): e63.
doi: 10.1093/nar/28.12.e63 pmid: 10871386
[9] 黄海龙, 朱鹏, 杨浩. LAMP-LFD技术及其在生物快检方面应用. 中国生物工程杂志, 2015, 35(12): 89-95.
Huang H L, Zhu P, Yang H. LAMP-LFD technology and its application in rapid detection of biological. China Biotechnology, 2015, 35(12): 89-95.
[10] Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 2002, 16(3): 223-229.
doi: 10.1006/mcpr.2002.0415 pmid: 12144774
[11] Gao X Q, Sun B Q, Guan Y F. Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP). Analytical and Bioanalytical Chemistry, 2019, 411(6): 1211-1218.
doi: 10.1007/s00216-018-1552-2 pmid: 30617407
[12] Wong Y P, Othman S, Lau Y L, et al. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. Journal of Applied Microbiology, 2018, 124(3): 626-643.
doi: 10.1111/jam.13647 pmid: 29165905
[13] 时忠林, 崔俊生, 杨柯, 等. 基于微流控芯片的核酸等温扩增技术研究进展. 中国生物工程杂志, 2021, 41(2): 116-128.
Shi Z L, Cui J S, Yang K, et al. Research progress in isothermal amplification of nucleic acid based on microfluidic chip. China Biotechnology, 2021, 41(2): 116-128.
[14] Ren K N, Zhou J H, Wu H K. Materials for microfluidic chip fabrication. Accounts of Chemical Research, 2013, 46(11): 2396-2406.
doi: 10.1021/ar300314s pmid: 24245999
[15] Gao H W, Yan C L, Wu W, et al. Application of microfluidic chip technology in food safety sensing. Sensors, 2020, 20(6): 1792.
doi: 10.3390/s20061792
[16] Zhang H Q, Xu Y, Fohlerova Z, et al. LAMP-on-a-chip: revising microfluidic platforms for loop-mediated DNA amplification. Trends in Analytical Chemistry, 2019, 113: 44-53.
doi: 10.1016/j.trac.2019.01.015
[17] 黄维华, 翟峰, 洪国藩. Bst DNA聚合酶大片段的克隆、表达、性质及其应用. 生物化学与生物物理学报, 1999, 31(4): 379-385.
Huang W H, Zhai F, Hong G F. Cloning, expression, characterization and application of Bst DNA polymerase large fragment. Acta Biochimica et Biophysica Sinica, 1999, 31(4): 379-385.
[18] Yang Q R, Domesle K J, Ge B L. Loop-mediated isothermal amplification for Salmonella detection in food and feed: current applications and future directions. Foodborne Pathogens and Disease, 2018, 15(6): 309-331.
doi: 10.1089/fpd.2018.2445
[19] Park J W. Principles and applications of loop-mediated isothermal amplification to point-of-care tests. Biosensors, 2022, 12(10): 857.
doi: 10.3390/bios12100857
[20] Elvira K S, Gielen F, Tsai S S H, et al. Materials and methods for droplet microfluidic device fabrication. Lab on a Chip, 2022, 22(5): 859-875.
doi: 10.1039/D1LC00836F
[21] 周兵高, 郭钟宁, 于兆勤, 等. 基于玻璃基材的微流控芯片制造工艺. 机电工程技术, 2017, 46(2): 49-57.
Zhou B G, Guo Z N, Yu Z Q, et al. Based on the microfluidic chip manufacturing technology of glass substrate. Mechanical & Electrical Engineering Technology, 2017, 46(2): 49-57.
[22] Fu J, Chiang E L C, Medriano C A D, et al. Rapid quantification of fecal indicator bacteria in water using the most probable number - loop-mediated isothermal amplification (MPN-LAMP) approach on a polymethyl methacrylate (PMMA) microchip. Water Research, 2021, 199: 117172.
doi: 10.1016/j.watres.2021.117172
[23] Seo M J, Yoo J C. Fully automated lab-on-A-disc platform for loop-mediated isothermal amplification using micro-carbon-activated cell lysis. Sensors, 2020, 20(17): 4746.
doi: 10.3390/s20174746
[24] 李璐, 冯鑫, 范一强. 微流控芯片生物相容性的研究进展. 微纳电子技术, 2022, 59(7): 625-635, 709.
Li L, Feng X, Fan Y Q. Research progress on biocompatibility of microfluidic chips. Micronanoelectronic Technology, 2022, 59(7): 625-635, 709.
[25] Zhou W, Dou M W, Timilsina S S, et al. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab on a Chip, 2021, 21(14): 2658-2683.
doi: 10.1039/d1lc00414j pmid: 34180494
[26] Ulep T H, Yoon J Y. Challenges in paper-based fluorogenic optical sensing with smartphones. Nano Convergence, 2018, 5(1): 14-24.
doi: 10.1186/s40580-018-0146-1
[27] 田恬, 黄艺顺, 林冰倩, 等. 纸芯片微流控技术的发展及应用. 分析测试学报, 2015, 34(3): 257-267.
Tian T, Huang Y S, Lin B Q, et al. Developments and applications of paper-based microfluidics. Journal of Instrumental Analysis, 2015, 34(3): 257-267.
[28] 王欢, 史梅梅, 吴丰春, 等. LAMP-微流控芯片技术在现场检测中的研究进展. 中国口岸科学技术, 2022, 4(4): 43-47.
Wang H, Shi M M, Wu F C, et al. Development of loop-mediated isothermal amplification-based microfluidic chip technology for point-of-care test. China Port Science and Technology, 2022, 4(4): 43-47.
[29] Dou M W, Sanjay S T, Benhabib M, et al. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta, 2015, 145: 43-54.
doi: 10.1016/j.talanta.2015.04.068 pmid: 26459442
[30] Liana D D, Raguse B, Gooding J J, et al. Recent advances in paper-based sensors. Sensors, 2012, 12(9): 11505-11526.
doi: 10.3390/s120911505 pmid: 23112667
[31] Padzil F, Mariatulqabtiah A R, Tan W S, et al. Loop-mediated isothermal amplification (LAMP) as a promising point-of-care diagnostic strategy in avian virus research. Animals, 2021, 12(1): 76.
doi: 10.3390/ani12010076
[32] Lau Y L, Lai M Y, Teoh B T, et al. Colorimetric detection of dengue by single tube reverse-transcription-loop-mediated isothermal amplification. PLoS One, 2015, 10(9): e0138694.
doi: 10.1371/journal.pone.0138694
[33] Zeng Y Y, Wu C, He Y. Loop-mediated isothermal amplification-based microfluidic platforms for the detection of viral infections. Current Infectious Disease Reports, 2022, 24(12): 205-215.
doi: 10.1007/s11908-022-00790-5 pmid: 36341307
[34] 白榕, 白琳琳, 汪少芸, 等. LAMP扩增产物检测方法研究进展及基因编辑技术在其中的应用. 农业生物技术学报, 2021, 29(10): 2016-2030.
Bai R, Bai L L, Wang S Y, et al. Research progress of LAMP amplicons detection method and the application of gene editing technology. Journal of Agricultural Biotechnology, 2021, 29(10): 2016-2030.
[35] Seyrig G, Stedtfeld R D, Tourlousse D M, et al. Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. Journal of Microbiological Methods, 2015, 119: 223-227.
doi: 10.1016/j.mimet.2015.11.004 pmid: 26554941
[36] Xiong J, Huang B, Xu J S, et al. A closed-tube loop-mediated isothermal amplification assay for the visual detection of Staphylococcus aureus. Applied Biochemistry and Biotechnology, 2020, 191(1): 201-211.
doi: 10.1007/s12010-020-03278-x pmid: 32103471
[37] Salm E, Zhong Y, Reddy B Jr, et al. Electrical detection of nucleic acid amplification using an on-chip quasi-reference electrode and a PVC REFET. Analytical Chemistry, 2014, 86(14): 6968-6975.
doi: 10.1021/ac500897t pmid: 24940939
[38] Veigas B, Branquinho R, Pinto J V, et al. Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosensors and Bioelectronics, 2014, 52: 50-55.
doi: 10.1016/j.bios.2013.08.029
[39] Allgöwer S M, Hartmann C A, Lipinski C, et al. LAMP-LFD based on isothermal amplification of multicopy gene ORF160b: applicability for highly sensitive low-tech screening of allergenic soybean (Glycine max) in food. Foods, 2020, 9(12): 1741.
doi: 10.3390/foods9121741
[40] Lalle M, Possenti A, Dubey J P, et al. Loop-mediated isothermal amplification-lateral-flow dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad. Food Microbiology, 2018, 70: 137-142.
doi: 10.1016/j.fm.2017.10.001
[41] Das D, Lin C W, Chuang H S. LAMP-based point-of-care biosensors for rapid pathogen detection. Biosensors, 2022, 12(12): 1068.
doi: 10.3390/bios12121068
[42] Ma Y D, Li K H, Chen Y H, et al. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface. Lab on a Chip, 2019, 19(22): 3804-3814.
doi: 10.1039/C9LC00797K
[43] Oh S J, Park B H, Choi G, et al. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab on a Chip, 2016, 16(10): 1917-1926.
doi: 10.1039/c6lc00326e pmid: 27112702
[44] El-Tholoth M, Bai H W, Mauk M G, et al. A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need. Lab on a Chip, 2021, 21(6): 1118-1130.
doi: 10.1039/d0lc01229g pmid: 33527920
[45] Malic L, Brassard D, Da Fonte D, et al. Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. Lab on a Chip, 2022, 22(17): 3157-3171.
doi: 10.1039/d2lc00242f pmid: 35670202
[46] Xie C M, Chen S, Zhang L K, et al. Multiplex detection of blood-borne pathogens on a self-driven microfluidic chip using loop-mediated isothermal amplification. Analytical and Bioanalytical Chemistry, 2021, 413(11): 2923-2931.
doi: 10.1007/s00216-021-03224-8 pmid: 33712918
[47] Lin X, Jin X Y, Xu B, et al. Fast and parallel detection of four Ebola virus species on a microfluidic-chip-based portable reverse transcription loop-mediated isothermal amplification system. Micromachines, 2019, 10(11): 777.
doi: 10.3390/mi10110777
[48] Batule B S, Seok Y, Kim M G. Paper-based nucleic acid testing system for simple and early diagnosis of mosquito-borne RNA viruses from human serum. Biosensors and Bioelectronics, 2020, 151: 111998.
doi: 10.1016/j.bios.2019.111998
[49] Yuan X F, Lv J Z, Lin X M, et al. Multiplex detection of six swine viruses on an integrated centrifugal disk using loop-mediated isothermal amplification. Journal of Veterinary Diagnostic Investigation, 2019, 31(3): 415-425.
doi: 10.1177/1040638719841096 pmid: 30947641
[50] The Lancet. Malaria in 2022: a year of opportunity. Lancet, 2022, 399(10335): 1573.
doi: 10.1016/S0140-6736(22)00729-2 pmid: 35461540
[51] Kadimisetty K, Song J Z, Doto A M, et al. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosensors and Bioelectronics, 2018, 109: 156-163.
doi: 10.1016/j.bios.2018.03.009
[52] Choi G, Guan W H. Sample-to-answer microfluidic nucleic acid testing (NAT) on lab-on-a-disc for malaria detection at point of need. Methods in Molecular Biology, 2022, 2393: 297-313.
doi: 10.1007/978-1-0716-1803-5_16 pmid: 34837186
[53] Song J Z, Liu C C, Bais S, et al. Molecular detection of schistosome infections with a disposable microfluidic cassette. PLoS Neglected Tropical Diseases, 2015, 9(12): e0004318.
doi: 10.1371/journal.pntd.0004318
[54] Wan L, Gao J, Chen T L, et al. LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP). Biomedical Microdevices, 2019, 21(1): 9.
doi: 10.1007/s10544-018-0354-9 pmid: 30617586
[55] Wang H, Liu W W, zhang X J, et al. Toward point-of-care testing for JAK2 V617F mutation on a microchip. Journal of Chromatography A, 2015, 1410: 28-34.
doi: 10.1016/j.chroma.2015.07.079 pmid: 26235214
[56] Lin X, Bo Z H, Lv W Q, et al. Miniaturized microfluidic-based nucleic acid analyzer to identify new biomarkers of biopsy lung cancer samples for subtyping. Frontiers in Chemistry, 2022, 10: 946157.
doi: 10.3389/fchem.2022.946157
[57] Wang J S, Staheli J P, Wu A, et al. Detection of 14 high-risk human papillomaviruses using digital LAMP assays on a self-digitization chip. Analytical Chemistry, 2021, 93(6): 3266-3272.
doi: 10.1021/acs.analchem.0c04973 pmid: 33534543
[58] Wang L X, Fu J J, Zhou Y, et al. On-chip RT-LAMP and colorimetric detection of the prostate cancer 3 biomarker with an integrated thermal and imaging box. Talanta, 2020, 208: 120407.
doi: 10.1016/j.talanta.2019.120407
[59] Owoicho O, Olwal C O, Tettevi E J, et al. Loop-mediated isothermal amplification for Candida species surveillance in under-resourced setting: a review of evidence. Expert Review of Molecular Diagnostics, 2022, 22(6): 643-653.
doi: 10.1080/14737159.2022.2109963 pmid: 35920288
[1] 时忠林,崔俊生,杨柯,胡安中,李亚楠,刘勇,邓国庆,朱灿灿,朱灵. 基于微流控芯片的核酸等温扩增技术研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 116-128.
[2] 陈亮,高姗,毛海央,王云翔,冀斌,金志颖,康琳,杨浩,王景林. 超大表面积自驱动微流控芯片的设计与制备 *[J]. 中国生物工程杂志, 2019, 39(6): 17-24.
[3] 王静,许鑫,王雪雨,姚伦广,阚云超,冀君. 环介导等温扩增技术检测食品安全的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 84-91.
[4] 蒋丽莉,郑峻松,李艳,邓均,方立超,黄辉. 基于微流控芯片的体外血脑屏障模型构建 *[J]. 中国生物工程杂志, 2017, 37(12): 1-7.
[5] 桑维维, 常亚男, 李娟. 微流控芯片对乳腺癌细胞MDA-MB-231的捕获及再培养研究[J]. 中国生物工程杂志, 2015, 35(6): 46-53.
[6] 赵振礼, 蔡绍皙, 戴小珍. 微流控芯片在干细胞研究中的应用[J]. 中国生物工程杂志, 2011, 31(03): 81-86.
[7] 徐芊,孙晓红,赵勇,潘迎捷. 副溶血弧菌LAMP检测方法的建立[J]. 中国生物工程杂志, 2007, 27(12): 66-72.
[8] 石晶, 于建群. 基于MEMS技术的毛细管电泳芯片[J]. 中国生物工程杂志, 2003, 23(10): 89-92.
[9] 孔杰, 刘萍, 张岩. PCR技术在对虾病原检测中的应用[J]. 中国生物工程杂志, 1994, 14(6): 43-46.