Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 54-68    DOI: 10.13523/j.cb.2301036
综述     
肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*
李雨桐,崔天琦,张海林,于广乐,栾霁**(),王海龙**()
山东大学微生物技术国家重点实验室 微生物技术研究院 青岛 266237
Research Advances in Tumor-targeting Bacteria Escherichia coli Nissle 1917 in Cancer Therapy
LI Yu-tong,CUI Tian-qi,ZHANG Hai-lin,YU Guang-le,LUAN Ji**(),WANG Hai-long**()
State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
 全文: PDF(1483 KB)   HTML
摘要:

传统化疗、放疗等癌症治疗手段存在靶向性差、毒副作用大等问题。肿瘤靶向细菌可以特异性定殖于实体肿瘤微环境,通过基因工程改造可以使其在实体肿瘤内持续合成并释放抗癌药物,提高药物对肿瘤组织的选择性,避免化疗药物对正常组织的伤害,成为近年来癌症靶向治疗的研究热点。Escherichia coli Nissle 1917(EcN)作为一种被广泛研究和应用的益生菌,没有致病性,不产生免疫毒副作用,且具有高效的肿瘤靶向定殖能力,能在正常组织中迅速被清除,因此在癌症细菌疗法中备受关注。针对EcN在癌症靶向治疗研究方面的最新进展进行综述,介绍了通过基因工程提高其靶向性、可控性和安全性的方法,并介绍了EcN在辅助其他癌症治疗方面的应用。随着基因工程和合成生物学技术的进步,人们对细菌功能的设计合成能力不断增强,EcN作为可编程的活体药物,有希望发展成为对抗癌症的有力武器。

关键词: 细菌疗法肿瘤靶向治疗癌症合成生物学大肠杆菌Nissle 1917    
Abstract:

Traditional cancer therapies such as chemotherapy and radiotherapy have problems such as poor targeting and high toxic side effects. Tumor-targeting bacteria can specifically colonize in the solid tumor microenvironment, and can be genetically engineered to synthesize anti-cancer drugs, improve the selectivity of drugs for tumor tissues and avoid the damage to normal tissues by chemotherapeutic drugs. These advantages make tumor-targeting bacteria a research hot spot in targeted cancer therapy in recent years. Escherichia coli Nissle 1917(EcN), a probiotic bacterium that has been widely studied and used, has attracted much attention in bacterial cancer therapies. EcN is non-pathogenic and non-immunotoxic and has a highly effective tumor-targeting ability. It can be rapidly cleared in normal tissues. Here, the latest advances in engineering of EcN for tumor-targeting therapy were reviewed. The applications of EcN in adjuvant therapy were also discussed. With the advancement of genetic engineering and synthetic biology, scientists’ ability to design and synthesize bacteria is growing stronger. EcN as a programmable living drug holds the promise of becoming a powerful weapon against cancer.

Key words: Bacteriotherapy    Tumor-targeting therapy    Cancer    Synthetic biology    Escherichia coli Nissle 1917
收稿日期: 2023-01-27 出版日期: 2023-07-04
ZTFLH:  Q819  
基金资助: * 山东省泰山学者(tsqn201812008);高等学校学科创新引智计划(B16030)
通讯作者: **电子信箱:luanji@sdu.edu.cn;wanghailong@sdu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李雨桐
崔天琦
张海林
于广乐
栾霁
王海龙

引用本文:

李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.

LI Yu-tong, CUI Tian-qi, ZHANG Hai-lin, YU Guang-le, LUAN Ji, WANG Hai-long. Research Advances in Tumor-targeting Bacteria Escherichia coli Nissle 1917 in Cancer Therapy. China Biotechnology, 2023, 43(6): 54-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2301036        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/54

菌株 作用方式 机制 肿瘤类型 参考文献
S. typhimurium
ΔppGpp
提高安全性 敲除relAspoT基因,阻断ppGpp的合成 - [9]
L. monocytogenes
ΔactA/ΔinlB
提高安全性 敲除毒力基因actAinlB CT26小鼠结肠癌 [10]
E. coli Nissle 1917 提高安全性 通过调节kifC基因表达水平来动态调节细菌表面荚膜多糖的生成 4T1小鼠乳腺癌,CT26小鼠结肠癌 [11]
S. typhimurium SL1344 提高安全性 整合同步裂解回路 MC26小鼠结肠癌 [12]
S. typhimurium A1 提高靶向性 Leu和Arg营养缺陷型 PC-3人前列腺癌 [13]
S. typhimurium SF104 提高靶向性 aroA基因突变,芳香族氨基酸营养缺陷型 CT26小鼠结肠癌,Renca小鼠肾癌 [14]
E. coli Nissle 1917 提高靶向性 胸苷和DAP营养缺陷型 B16-F10小鼠黑色素瘤,EL4小鼠胸腺淋巴瘤,A20小鼠B细胞淋巴瘤,4T1小鼠乳腺癌,CT26小鼠结肠癌 [15]
S. typhimurium YB1 提高靶向性 将调节DAP合成的asd基因置于缺氧诱导的启动子下 MDA-MB-231人乳腺癌 [16]
S. typhimurium
VNP20009
提高靶向性 表达癌胚抗原(CEA)特异性抗体 MC38小鼠结肠癌 [17]
S. typhimurium
ΔppGpp
提高靶向性 将RGD序列融合在细菌外膜蛋白A上,以靶向癌细胞表面高表达的整合素αvβ3 MDA-MB-231人乳腺癌,MDA-MB-435人黑色素瘤,U87MG人胶质母细胞瘤,MCF7人乳腺癌,ASPC-1人胰腺癌,CT26小鼠结肠癌,4T1小鼠乳腺癌 [18]
S. typhimurium
VNP20009
提高靶向性 在细菌表面偶联肿瘤特异性适配体 4T1小鼠乳腺癌,H22小鼠肝细胞癌 [19]
S. typhimurium
VNP20009
提高安全性和
靶向性
敲除msbBpurI基因,使LPS中的类脂A豆蔻酰化,嘌呤营养缺陷型 B16-F10小鼠黑色素瘤,LOX人黑色素瘤,DLD-1人结肠癌 [20]
S. typhimurium S636 提高安全性和
靶向性
aroA基因突变以及参与类脂A修饰的其他突变 CT26小鼠结肠癌,B16-F10小鼠黑色素瘤 [21]
E. coli Nissle 1917 表达细胞毒性
药物
产生生物丁酸盐,导致细胞周期在G1期停滞,并诱导独立于p53的线粒体凋亡途径 HT29人结肠癌 [22]
E. coli Nissle 1917 表达细胞毒性药物 表达溶血素E,诱导细胞凋亡 HT29人结肠癌,SW620人结肠癌 [23]
S. typhimurium
VNP20009
表达前药转化酶 表达羧肽酶G2,激活前药并在人肿瘤细胞中诱导细胞毒性 MDA-MB-361人乳腺癌,WiDr人结肠癌,B16-F10小鼠黑色素瘤 [24]
E. coli DH5α 表达前药转化酶 表达β-葡糖醛酸酶,将前药9ACG转化为9AC,增加化疗的敏感性 CL1-5人肺腺癌 [25]
E. coli Nissle 1917 表达前药转化酶 表达黑芥子酶,将硫代葡萄糖苷转化为具抗癌活性的萝卜硫素 HCT116人结肠癌,LoVo人结肠癌,AGS人胃腺癌,MCF7人乳腺癌,CT26小鼠结肠癌 [26]
S. typhimurium S636 抑制肿瘤血管生成 递送抗血管生成剂内皮抑素 CT26小鼠结肠癌,B16-F10小鼠黑色素瘤 [21]
E. coli Nissle 1917 抑制肿瘤血管生
成/提高可控性
利用缺氧诱导启动子控制Tum-5表达 B16-F10小鼠黑色素瘤 [27]
E. coli Nissle 1917 递送化疗药物 使用酸不稳定接头将化疗药物DOX连接在细菌表面 4T1小鼠乳腺癌 [28]
S. typhimurium LT2 递送化疗药物 将装载DOX的纳米脂质体递送到肿瘤组织 4T1小鼠乳腺癌 [29]
S. typhimurium
SHJ2037
递送化疗药物 将装载紫杉醇的脂质体递送到肿瘤组织 4T1小鼠乳腺癌 [30]
S. typhimurium
BRD509
调节免疫微环境 表达重组IFN-γ,即IFN-γ融合到SipB的N端区域(残基1~160) B16-F10小鼠黑色素瘤 [31]
S. typhimurium
BRD509
调节免疫微环境 表达细胞因子LIGHT CT26小鼠结肠癌,D2F2小鼠乳腺癌,LLC小鼠肺癌 [32]
S. typhimurium GIDIL2 调节免疫微环境 在厌氧诱导的启动子下控制表达细胞因子IL-2 B16-F1小鼠黑色素瘤 [33]
E. coli Nissle 1917 调节免疫微环境 使用同步裂解回路,表达并局部释放CD47纳米抗体 A20小鼠B细胞淋巴瘤,4T1小鼠乳腺癌,B16-F10小鼠黑色素瘤 [34]
E. coli Nissle 1917 调节免疫微环境 使用同步裂解回路,表达并局部释放PD-L1和CTLA-4纳米抗体 CT26小鼠结肠癌,A20小鼠B细胞淋巴瘤 [35]
E. coli Nissle 1917 调节免疫微环境 表达STING激动剂CDA,激活抗原呈递细胞和肿瘤抗原呈递 B16-F10小鼠黑色素瘤,EL4小鼠淋巴细胞瘤,A20小鼠B细胞淋巴瘤,4T1小鼠乳腺癌,CT26小鼠结肠癌 [15]
L. rhamnosus
Probio-M9
调节免疫微环境 恢复被抗生素破坏的肠道微生物菌群,与PD-1阻断疗法协同作用 CT26小鼠结肠癌 [36]
L. monocytogenes 调节免疫微环境 通过递送破伤风类毒素重新激活先前存在的记忆T细胞以杀死肿瘤细胞 Panc-02小鼠胰腺癌细胞,4T1小鼠乳腺癌 [37]
S. typhimurium YB1 光热疗法 在YB1表面共价连接负载有吲哚菁绿的纳米颗粒INPs,将INPs递送到缺氧肿瘤核心后其光热效应可以杀死肿瘤细胞 MB49小鼠膀胱癌 [38]
E. coli MG1655 调节免疫微环
境/光热疗法
通过细菌上修饰的生物矿化金纳米颗粒AuNPs的光热效应控制TNF-α在肿瘤部位表达 4T1小鼠乳腺癌 [39]
S. typhimurium
VNP20009
调节免疫微环
境/光热疗法
在细菌表面涂覆聚多巴胺,并局部接种含有PD-1的基于磷脂的相分离凝胶 B16-F10小鼠黑色素瘤 [40]
E. coli Nissle 1917 调节免疫微环
境/光热疗法
在细菌表面偶联基于PDA纳米颗粒与OVA抗原和α-PD-1抗体的三重免疫纳米激活剂 CT26小鼠结肠癌,MC38小鼠结肠癌 [41]
E. coli BL21(DE3) 调节免疫微环
境/光热疗法
表达产生黑色素,通过多巴胺的原位聚合将αPD-1锚定在细菌表面 4T1小鼠乳腺癌 [42]
Synechococcus 7942 光动力疗法 光敏剂附着在Syne表面,实现肿瘤靶向光敏剂递送和原位光催化制氧 4T1小鼠乳腺癌 [43]
E. coli MG1655 光动力疗法/
递送化疗药物
通过仿生矿化在细菌上装载了含有光敏剂Ce6和化疗药物DOX的ZIF-8涂层 4T1小鼠乳腺癌 [44]
表1  已用于肿瘤治疗的菌株及其作用方式
图1  提高EcN可控性的三种策略
图2  EcN在辅助治疗肿瘤方面的应用
[1] Yi C, Huang Y, Guo Z Y, et al. Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacologica Sinica, 2005, 26(5): 629-634.
doi: 10.1111/j.1745-7254.2005.00094.x
[2] Van Mellaert L, Barbé S, Anné J. Clostridium spores as anti-tumour agents. Trends in Microbiology, 2006, 14(4): 190-196.
pmid: 16500103
[3] Thamm D, Kurzman I, King I, et al. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clinical Cancer Research, 2005, 11: 4827-4834.
doi: 10.1158/1078-0432.CCR-04-2510
[4] Stritzker J, Weibel S, Hill P J, et al. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. International Journal of Medical Microbiology, 2007, 297(3): 151-162.
doi: 10.1016/j.ijmm.2007.01.008
[5] Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science, 2020, 368(6494): 973-980.
doi: 10.1126/science.aay9189 pmid: 32467386
[6] Sepich-Poore G D, Zitvogel L, Straussman R, et al. The microbiome and human cancer. Science, 2021, 371(6536): eabc4552.
doi: 10.1126/science.abc4552
[7] Poore G D, Kopylova E, Zhu Q Y, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature, 2020, 579(7800): 567-574.
doi: 10.1038/s41586-020-2095-1
[8] Kramer M G, Masner M, Ferreira F A, et al. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Frontiers in Microbiology, 2018, 9: 16.
doi: 10.3389/fmicb.2018.00016 pmid: 29472896
[9] Na H S, Kim H J, Lee H C, et al. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine, 2006, 24(12): 2027-2034.
doi: 10.1016/j.vaccine.2005.11.031
[10] Brockstedt D G, Giedlin M A, Leong M L, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13832-13837.
[11] Harimoto T, Hahn J, Chen Y Y, et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nature Biotechnology, 2022, 40(8): 1259-1269.
doi: 10.1038/s41587-022-01244-y pmid: 35301496
[12] Din M O, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 2016, 536(7614): 81-85.
doi: 10.1038/nature18930
[13] Zhao M, Yang M, Li X M, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3): 755-760.
[14] Felgner S, Frahm M, Kocijancic D, et al. aroA-deficient Salmonella enterica serovar typhimurium is more than a metabolically attenuated mutant. mBio, 2016, 7(5): e01220-16.
[15] Leventhal D S, Sokolovska A, Li N, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nature Communications, 2020, 11: 2739.
doi: 10.1038/s41467-020-16602-0 pmid: 32483165
[16] Yu B, Yang M, Shi L, et al. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella typhimurium strain. Scientific Reports, 2012, 2(1): 1-10.
[17] Bereta M, Hayhurst A, Gajda M, et al. Improving tumor targeting and therapeutic potential of Salmonella VNP 20009 by displaying cell surface CEA-specific antibodies. Vaccine, 2007, 25(21): 4183-4192.
doi: 10.1016/j.vaccine.2007.03.008
[18] Park S H, Zheng J H, Nguyen V H, et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy. Theranostics, 2016, 6(10): 1672-1682.
doi: 10.7150/thno.16135
[19] Geng Z M, Cao Z P, Liu R, et al. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nature Communications, 2021, 12: 6584.
doi: 10.1038/s41467-021-26956-8 pmid: 34782610
[20] Clairmont C, Lee K C, Pike J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimuvium. The Journal of Infectious Diseases, 2000, 181(6): 1996-2002.
doi: 10.1086/jid.2000.181.issue-6
[21] Liang K, Liu Q, Li P, et al. Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Therapy, 2018, 25(7): 167-183.
doi: 10.1038/s41417-018-0021-6
[22] Chiang C J, Hong Y H. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Scientific Reports, 2021, 11: 18172.
doi: 10.1038/s41598-021-97457-3
[23] Chiang C J, Huang P H. Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Scientific Reports, 2021, 11: 5853.
doi: 10.1038/s41598-021-85372-6
[24] Friedlos F, Lehouritis P, Ogilvie L, et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clinical Cancer Research, 2008, 14: 4259-4266.
doi: 10.1158/1078-0432.CCR-07-4800 pmid: 18594008
[25] Cheng C M, Lu Y L, Chuang K H, et al. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Therapy, 2008, 15(6): 393-401.
doi: 10.1038/cgt.2008.10 pmid: 18369382
[26] Ho C L, Tan H Q, Chua K J, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nature Biomedical Engineering, 2018, 2(1): 27-37.
doi: 10.1038/s41551-017-0181-y pmid: 31015663
[27] He L, Yang H J, Liu F, et al. Escherichia coli Nissle 1917 engineered to express Tum-5 can restrain murine melanoma growth. Oncotarget, 2017, 8(49): 85772-85782.
doi: 10.18632/oncotarget.v8i49
[28] Xie S Z, Zhao L, Song X J, et al. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. Journal of Controlled Release, 2017, 268: 390-399.
doi: 10.1016/j.jconrel.2017.10.041
[29] Zoaby N, Shainsky-Roitman J, Badarneh S, et al. Autonomous bacterial nanoswimmers target cancer. Journal of Controlled Release, 2017, 257: 68-75.
doi: S0168-3659(16)30940-3 pmid: 27744036
[30] Van Du Nguyen, Han J W, Choi Y J, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella typhimurium). Sensors and Actuators B: Chemical, 2016, 224: 217-224.
doi: 10.1016/j.snb.2015.09.034
[31] Yoon W, Park Y C, Kim J, et al. Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma. European Journal of Cancer, 2017, 70: 48-61.
doi: 10.1016/j.ejca.2016.10.010
[32] Loeffler M, Le’Negrate G, Krajewska M, et al. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(31): 12879-12883.
[33] al-Ramadi B K, Fernandez-Cabezudo M J, El-Hasasna H, et al. Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis. Clinical Immunology, 2009, 130(1): 89-97.
doi: 10.1016/j.clim.2008.08.021 pmid: 18849195
[34] Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nature Medicine, 2019, 25(7): 1057-1063.
doi: 10.1038/s41591-019-0498-z pmid: 31270504
[35] Gurbatri C R, Lia I, Vincent R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine, 2020, 12(530): eaax0876.
doi: 10.1126/scitranslmed.aax0876
[36] Gao G Q, Ma T, Zhang T, et al. Adjunctive probiotic Lactobacillus rhamnosus probio-M9 administration enhances the effect of anti-PD-1 antitumor therapy via restoring antibiotic-disrupted gut microbiota. Frontiers in Immunology, 2021, 12: 772532.
doi: 10.3389/fimmu.2021.772532
[37] Selvanesan B C, Chandra D, Quispe-Tintaya W, et al. Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice. Science Translational Medicine, 2022, 14(637): eabc1600.
doi: 10.1126/scitranslmed.abc1600
[38] Chen F M, Zang Z S, Chen Z, et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials, 2019, 214: 119226.
doi: 10.1016/j.biomaterials.2019.119226
[39] Fan J X, Li Z H, Liu X H, et al. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Letters, 2018, 18(4): 2373-2380.
doi: 10.1021/acs.nanolett.7b05323
[40] Chen W F, Guo Z F, Zhu Y N, et al. Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Advanced Functional Materials, 2020, 30(1): 1906623.
doi: 10.1002/adfm.v30.1
[41] Li J J, Xia Q, Guo H Y, et al. Frontispiece:decorating bacteria with triple immune nanoactivators generates tumor-resident living immunotherapeutics. Angewandte Chemie International Edition, 2022, 61(27): e202282762.
[42] Wang L, Cao Z P, Zhang M M, et al. Spatiotemporally controllable distribution of combination therapeutics in solid tumors by dually modified bacteria. Advanced Materials, 2022, 34(1): 2106669.
doi: 10.1002/adma.v34.1
[43] Liu L L, He H M, Luo Z Y, et al. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Advanced Functional Materials, 2020, 30(10): 1910176.
doi: 10.1002/adfm.v30.10
[44] Yan S Q, Zeng X M, Wang Y, et al. Biomineralization of bacteria by a metal-organic framework for therapeutic delivery. Advanced Healthcare Materials, 2020, 9(12): 2000046.
doi: 10.1002/adhm.v9.12
[45] Grozdanov L, Zähringer U, Blum-Oehler G, et al. A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain nissle 1917. Journal of Bacteriology, 2002, 184(21): 5912-5925.
doi: 10.1128/JB.184.21.5912-5925.2002 pmid: 12374825
[46] Sturm A, Rilling K, Baumgart D C, et al. Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infection and Immunity, 2005, 73(3): 1452-1465.
doi: 10.1128/IAI.73.3.1452-1465.2005
[47] Arribas B, Rodríguez-Cabezas M, Camuesco D, et al. A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. British Journal of Pharmacology, 2009, 157(6): 1024-1033.
doi: 10.1111/j.1476-5381.2009.00270.x pmid: 19486007
[48] Chua K J, Kwok W C, Aggarwal N, et al. Designer probiotics for the prevention and treatment of human diseases. Current Opinion in Chemical Biology, 2017, 40: 8-16.
doi: S1367-5931(17)30050-9 pmid: 28478369
[49] Singh B, Mal G, Marotta F. Designer probiotics: paving the way to living therapeutics. Trends in Biotechnology, 2017, 35(8): 679-682.
doi: S0167-7799(17)30082-3 pmid: 28483159
[50] Shen H K, Zhao Z T, Zhao Z J, et al. Native and engineered probiotics: promising agents against related systemic and intestinal diseases. International Journal of Molecular Sciences, 2022, 23(2): 594.
doi: 10.3390/ijms23020594
[51] 王彦雯, 叶静怡, 王鹏超. 合成生物学在E.coli Nissle 1917靶向治疗癌症中的应用. 中国生物化学与分子生物学报, 2021, 37(1): 20-28.
Wang Y W, Ye J Y, Wang P C. Application of synthetic biology in targeted cancer therapies by E.coli Nissle 1917. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(1): 20-28.
[52] Fischbach M A, Bluestone J A, Lim W A. Cell-based therapeutics: the next pillar of medicine. Science Translational Medicine, 2013, 5(179): e3005568.
[53] Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nature Reviews Genetics, 2012, 13(1): 21-35.
doi: 10.1038/nrg3094
[54] Wu M R, Jusiak B, Lu T K. Engineering advanced cancer therapies with synthetic biology. Nature Reviews Cancer, 2019, 19(4): 187-195.
[55] Forbes N S. Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 2010, 10(11): 785-794.
doi: 10.1038/nrc2934 pmid: 20944664
[56] Zhou S B, Gravekamp C, Bermudes D, et al. Tumour-targeting bacteria engineered to fight cancer. Nature Reviews Cancer, 2018, 18(12): 727-743.
doi: 10.1038/s41568-018-0070-z pmid: 30405213
[57] Piñero-Lambea C, Ruano-Gallego D, Fernández L Á. Engineered bacteria as therapeutic agents. Current Opinion in Biotechnology, 2015, 35: 94-102.
doi: 10.1016/j.copbio.2015.05.004 pmid: 26070111
[58] Pedrolli D B, Ribeiro N V, Squizato P N, et al. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends in Biotechnology, 2019, 37(1): 100-115.
doi: S0167-7799(18)30258-0 pmid: 30318171
[59] Chien T, Doshi A, Danino T. Advances in bacterial cancer therapies using synthetic biology. Current Opinion in Systems Biology, 2017, 5: 1-8.
doi: 10.1016/j.coisb.2017.05.009 pmid: 29881788
[60] Wu F, Liu J Y. Decorated bacteria and the application in drug delivery. Advanced Drug Delivery Reviews, 2022, 188: 114443.
doi: 10.1016/j.addr.2022.114443
[61] Youn W, Kim J Y, Park J, et al. Single-cell nanoencapsulation: from passive to active shells. Advanced Materials, 2020, 32(35): 1907001.
doi: 10.1002/adma.v32.35
[62] Centurion F, Basit A W, Liu J Y, et al. Nanoencapsulation for probiotic delivery. ACS Nano, 2021, 15(12): 18653-18660.
doi: 10.1021/acsnano.1c09951 pmid: 34860008
[63] Niβle A. Weiteres über grundlagen und Praxis der mutaflorbehandlung. DMW - Deutsche Medizinische Wochenschrift, 1925, 51(44): 1809-1813.
doi: 10.1055/s-0028-1137292
[64] Ou B M, Yang Y, Tham W L, et al. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Applied Microbiology and Biotechnology, 2016, 100(20): 8693-8699.
doi: 10.1007/s00253-016-7829-5
[65] Kruis W, Fric P, Pokrotnieks J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut, 2004, 53(11): 1617-1623.
doi: 10.1136/gut.2003.037747 pmid: 15479682
[66] Sonnenborn U. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiology Letters, 2016, 363(19): fnw212.
doi: 10.1093/femsle/fnw212
[67] Wassenaar T M. Insights from 100 years of research with probiotic E. coli. European Journal of Microbiology and Immunology, 2016, 6(3): 147-161.
pmid: 27766164
[68] Reister M, Hoffmeier K, Krezdorn N, et al. Complete genome sequence of the Gram-negative probiotic Escherichia coli strain Nissle 1917. Journal of Biotechnology, 2014, 187: 106-107.
doi: 10.1016/j.jbiotec.2014.07.442 pmid: 25093936
[69] Sonnenborn U, Schulze J. The non-pathogenic Escherichia coli strain Nissle 1917-features of a versatile probiotic. Microbial Ecology in Health and Disease, 2009, 21(3-4): 122-158.
doi: 10.3109/08910600903444267
[70] Zhang Y L, Ji W, He L, et al. E. coli Nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy. Theranostics, 2018, 8(6): 1690-1705.
doi: 10.7150/thno.21575
[71] Zhang Y L, Zhang Y M, Xia L Q, et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Applied and Environmental Microbiology, 2012, 78(21): 7603-7610.
doi: 10.1128/AEM.01390-12
[72] Yu X L, Lin C S, Yu J, et al. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy. Microbial Biotechnology, 2020, 13(3): 629-636.
doi: 10.1111/mbt2.v13.3
[73] Grozdanov L, Raasch C, Schulze J, et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. Journal of Bacteriology, 2004, 186(16): 5432-5441.
doi: 10.1128/JB.186.16.5432-5441.2004 pmid: 15292145
[74] Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Reports, 2001, 2(5): 376-381.
doi: 10.1093/embo-reports/kve097 pmid: 11375927
[75] van der Hooft J J J, Goldstone R J, Harris S, et al. Substantial extracellular metabolic differences found between phylogenetically closely related probiotic and pathogenic strains of Escherichia coli. Frontiers in Microbiology, 2019, 10: 252.
doi: 10.3389/fmicb.2019.00252
[76] Behnsen J, Deriu E, Sassone-Corsi M, et al. Probiotics: properties, examples, and specific applications. Cold Spring Harbor Perspectives in Medicine, 2013, 3(3): a010074.
[77] Hafez M, Hayes K, Goldrick M, et al. The K5 capsule of Escherichia coli strain nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infection and Immunity, 2009, 77(7): 2995-3003.
doi: 10.1128/IAI.00040-09
[78] Hafez M, Hayes K, Goldrick M, et al. The K5 capsule of Escherichia coli strain Nissle 1917 is important in stimulating expression of toll-like receptor 5, CD14, MyD88, and TRIF together with the induction of interleukin-8 expression via the mitogen-activated protein kinase pathway in epithelial cells. Infection and Immunity, 2010, 78(5): 2153-2162.
doi: 10.1128/IAI.01406-09
[79] Nzakizwanayo J, Kumar S, Ogilvie L A, et al. Disruption of Escherichia coli Nissle 1917 K5 capsule biosynthesis, through loss of distinct kfi genes, modulates interaction with intestinal epithelial cells and impact on cell health. PLoS One, 2015, 10(3): e0120430.
doi: 10.1371/journal.pone.0120430
[80] Li R J, Helbig L, Fu J, et al. Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Research in Microbiology, 2019, 170(2): 74-79.
doi: 10.1016/j.resmic.2018.11.001
[81] Xie S Z, Chen M H, Song X J, et al. Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomaterialia, 2018, 78: 198-210.
doi: S1742-7061(18)30442-2 pmid: 30036720
[82] Xie S Z, Zhang P, Zhang Z L, et al. Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. Acta Biomaterialia, 2021, 131: 172-184.
doi: 10.1016/j.actbio.2021.06.030 pmid: 34171461
[83] Abedi M H, Yao M S, Mittelstein D R, et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nature Communications, 2022, 13: 1585.
doi: 10.1038/s41467-022-29065-2 pmid: 35332124
[84] Chen J H, Li X H, Liu Y M, et al. Engineering a probiotic strain of Escherichia coli to induce the regression of colorectal cancer through production of 5-aminolevulinic acid. Microbial Biotechnology, 2021, 14(5): 2130-2139.
doi: 10.1111/mbt2.v14.5
[85] Canale F P, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature, 2021, 598(7882): 662-666.
doi: 10.1038/s41586-021-04003-2
[86] Huang C Y, Wang F B, Liu L, et al. Hypoxic tumor radiosensitization using engineered probiotics. Advanced Healthcare Materials, 2021, 10(10): 2002207.
doi: 10.1002/adhm.v10.10
[87] Geiger R, Rieckmann J C, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, 167(3): 829-842.e13.
doi: S0092-8674(16)31313-7 pmid: 27745970
[88] 张悦, 邢仕歌, 王震, 等. 核酸适配体在靶向药物传递中的研究进展. 生物化学与生物物理进展, 2015, 42(3): 236-243.
Zhang Y, Xing S G, Wang Z, et al. Recent research of aptamer in target drug delivery. China Industrial Economics, 2015, 42(3): 236-243.
[89] Cao Z P, Cheng S S, Wang X Y, et al. Camouflaging bacteria by wrapping with cell membranes. Nature Communications, 2019, 10: 3452.
doi: 10.1038/s41467-019-11390-8 pmid: 31388002
[90] Feng P P, Cao Z P, Wang X Y, et al. On-demand bacterial reactivation by restraining within a triggerable nanocoating. Advanced Materials, 2020, 32(34): 2002406.
doi: 10.1002/adma.v32.34
[91] Liu Y, Zhang M M, Wang X Y, et al. Dressing bacteria with a hybrid immunoactive nanosurface to elicit dual anticancer and antiviral immunity. Advanced Materials, 2023, 35(11): 2210949.
doi: 10.1002/adma.v35.11
[92] 林思思, 潘超, 张一帆, 等. 基于表面涂层益生菌的肿瘤抗原口服递送系统. 合成生物学, 2022(4): 810-820.
doi: 10.12211/2096-8280.2022-010
Lin S S, Pan C, Zhang Y F, et al. Coated probiotic-based drug carriers for oral delivery of tumor antigens. Synthetic Biology Journal, 2022(4): 810-820.
doi: 10.12211/2096-8280.2022-010
[93] Lehouritis P, Stanton M, McCarthy F O, et al. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. Journal of Controlled Release, 2016, 222: 9-17.
doi: 10.1016/j.jconrel.2015.11.030 pmid: 26655063
[94] Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Letters, 2012, 320(2): 130-137
doi: 10.1016/j.canlet.2012.03.008 pmid: 22425960
[95] He L, Yang H J, Tang J L, et al. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. Journal of Biological Engineering, 2019, 13(1): 1-13.
doi: 10.1186/s13036-018-0125-4
[96] Drummond D C, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 1999, 51(4): 691-743.
pmid: 10581328
[97] Webb B A, Chimenti M, Jacobson M P, et al. Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 2011, 11(9): 671-677.
doi: 10.1038/nrc3110 pmid: 21833026
[98] Zhou J H, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nature Reviews Drug Discovery, 2017, 16(3): 181-202.
doi: 10.1038/nrd.2016.199 pmid: 27807347
[99] 崔超, 涂强, 张友明. 细菌用于靶向治疗肿瘤的研究进展. 中国抗生素杂志, 2021, 46(5):388-395.
Cui C, Tu Q, Zhang Y M. Advances in bacteria for tumor-targeting therapy. Chinese Journal of Antibiotics, 2021, 46(5):388-395.
[100] Wu L Y, Bao F F, Li L, et al. Bacterially mediated drug delivery and therapeutics: strategies and advancements. Advanced Drug Delivery Reviews, 2022, 187: 114363.
doi: 10.1016/j.addr.2022.114363
[101] Yang E, Qian W P, Cao Z H, et al. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery. Theranostics, 2015, 5(1): 43-61.
doi: 10.7150/thno.10350 pmid: 25553097
[102] Cheng T J, Liu J J, Ren J, et al. Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics, 2016, 6(9): 1277-1292.
doi: 10.7150/thno.15133 pmid: 27375779
[103] Postow M A, Callahan M K, Wolchok J D. Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology, 2015, 33(17): 1974-1982.
doi: 10.1200/JCO.2014.59.4358 pmid: 25605845
[104] Gerard C L, Delyon J, Wicky A, et al. Turning tumors from cold to inflamed to improve immunotherapy response. Cancer Treatment Reviews, 2021, 101: 102227.
doi: 10.1016/j.ctrv.2021.102227
[105] Appleton E, Hassan J, Chan Wah Hak C, et al. Kickstarting immunity in cold tumours: localised tumour therapy combinations with immune checkpoint blockade. Frontiers in Immunology, 2021, 12: 754436.
doi: 10.3389/fimmu.2021.754436
[106] Tang Q, Peng X, Xu B, et al. Current status and future directions of bacteria-based immunotherapy. Frontiers in Immunology, 2022, 13: 911783.
doi: 10.3389/fimmu.2022.911783
[107] Ribas A, Wolchok J D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382): 1350-1355.
doi: 10.1126/science.aar4060 pmid: 29567705
[108] Gu J, Wu A W, Li J Y, et al. An assessment of World Health Organization criteria for severe acute respiratory syndrome in patients with cancer. Cancer, 2004, 100(7): 1374-1378.
pmid: 15042670
[109] Corrales L, Glickman L H, McWhirter S M, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Reports, 2015, 11(7): 1018-1030.
doi: 10.1016/j.celrep.2015.04.031 pmid: 25959818
[110] Lin M J, Svensson-Arvelund J, Lubitz G S, et al. Cancer vaccines: the next immunotherapy frontier. Nature Cancer, 2022, 3(8): 911-926.
doi: 10.1038/s43018-022-00418-6 pmid: 35999309
[111] Zhen X, Cheng P H, Pu K Y. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small, 2019, 15(1): 1804105.
doi: 10.1002/smll.v15.1
[112] 郭弘, 李霞, 瞿鼎, 等. Fe基金属-有机框架在抗肿瘤药物递送方面的研究进展. 药学学报, 2022, 57(5): 1252-1262.
Guo H, Li X, Qu D, et al. Research progress on Fe-based metal-organic frameworks in antitumor drug delivery. Acta Pharmaceutica Sinica, 2022, 57(5): 1252-1262.
[113] Lin D W, Feng X L, Mai B J, et al. Bacterial-based cancer therapy: an emerging toolbox for targeted drug/gene delivery. Biomaterials, 2021, 277: 121124.
doi: 10.1016/j.biomaterials.2021.121124
[114] Zhang N, Song J, Liu Y, et al. Photothermal therapy mediated by phase-transformation nanoparticles facilitates delivery of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. Journal of Controlled Release, 2019, 306: 15-28.
doi: S0168-3659(19)30300-1 pmid: 31132380
[115] Luo L H, Zhu C Q, Yin H, et al. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors. ACS Nano, 2018, 12(8): 7647-7662.
doi: 10.1021/acsnano.8b00204 pmid: 30020768
[116] Dougherty T J, Gomer C J, Henderson B W, et al. Photodynamic therapy. JNCI: Journal of the National Cancer Institute, 1998, 90(12): 889-905.
doi: 10.1093/jnci/90.12.889
[1] 韩佳, 范月蕾, 毛开云. 溶瘤病毒市场及研发格局分析*[J]. 中国生物工程杂志, 2023, 43(6): 87-101.
[2] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[3] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[4] 张鑫, 张瑞, 唐景峰. AMOT家族成员的功能研究及在癌症治疗中的潜在应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 104-119.
[5] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[6] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[7] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[8] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[9] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[10] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[11] 赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.
[12] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[13] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[14] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[15] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.