Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 120-128    DOI: 10.13523/j.cb.2206014
专稿     
总体国家安全观下合成生物学风险和应对策略研究*
赵赤鸿1,苏丹丹2,厉春3,吴宗震3,左锟澜3,徐雁龙4,刘欢3,5,**()
1 中国疾病预防控制中心 北京 102206
2 武汉大学 武汉 430072
3 中国科学技术大学 合肥 230026
4 中国科学院大学 北京 100049
5 中国科学院武汉病毒研究所 武汉 430071
Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept
ZHAO Chi-hong1,SU Dan-dan2,LI Chun3,WU Zong-zhen3,ZUO Kun-lan3,XU Yan-long4,LIU Huan3,5,**()
1 Chinese Center for Disease Control and Prevention, Beijing 102206, China
2 Wuhan University, Wuhan 430072, China
3 University of Science and Technology of China, Hefei 230026, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
5 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
 全文: PDF(570 KB)   HTML
摘要:

合成生物学是近年来兴起的一门兼材料学、医学和信息学等学科特性的交叉学科,在促进医学进步和科技转化应用的同时,也在总体国家安全内涵中被赋予了特殊的重要地位。如何在新时期应对错综复杂的安全形势和严峻挑战,是世界各国和国际社会所面临的科技治理和生物安全的重要命题。重点介绍合成生物技术相关生物武器威胁、生物恐怖威胁、生物安全国际公约条例、生物安全伦理治理框架,总结近年来合成生物技术领域生物安全风险相关问题,提出合成生物学安全风险应对策略和国家总体安全观下科技发展建议。

关键词: 总体国家安全观生物安全合成生物学    
Abstract:

Synthetic biology is an interdisciplinary subject with the characteristics of materials science, medicine and informatics. It has been endowed with a special and important position in the view of overall national security concept while promoting the medical progress and development of science and technology. How to deal with the challenges in the new era is an important proposition in terms of scientific and technological governance and biosafety for all of the countries in the world and internation society. This article mainly introduces the threat of biological weapons, bioterrorism threat, regulations of the International Convention on Biosafety and the ethical governance framework of biosafety related to synthetic biotechnology, summarizes the risks of biosafety related issues in the field of synthetic biotechnology in recent years, and puts forward suggestions for the strategies and the development of science and technology in the view of overall national security concept.

Key words: Overall national security cocept    Biosafety    Synthetic biology
收稿日期: 2022-06-13 出版日期: 2023-01-05
ZTFLH:  Q81  
基金资助: *国家重点研发计划(2018YFA0902402);中国科学院“高质量数据池和数据产品服务体系建设”资助项目(2019WQZX012)
通讯作者: 刘欢     E-mail: liuhuan520@ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵赤鸿
苏丹丹
厉春
吴宗震
左锟澜
徐雁龙
刘欢

引用本文:

赵赤鸿,苏丹丹,厉春,吴宗震,左锟澜,徐雁龙,刘欢. 总体国家安全观下合成生物学风险和应对策略研究*[J]. 中国生物工程杂志, 2022, 42(12): 120-128.

ZHAO Chi-hong,SU Dan-dan,LI Chun,WU Zong-zhen,ZUO Kun-lan,XU Yan-long,LIU Huan. Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept. China Biotechnology, 2022, 42(12): 120-128.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2206014        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/120

[1] Hunter D. How to object to radically new technologies on the basis of justice: the case of synthetic biology. Bioethics, 2013, 27(8): 426-434.
doi: 10.1111/bioe.12049 pmid: 24010854
[2] Schwille P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science, 2011, 333(6047): 1252-1254.
doi: 10.1126/science.1211701 pmid: 21885774
[3] 孙卓名, 毛欣娟, 梁桁. 英美国家生物安全战略比较分析. 辽宁警察学院学报, 2021, 23(4): 8-13.
Sun Z M, Mao X J, Liang H. Comparison of UK and USA national biosecurity and biodefense strategies. Journal of Liaoning Police College, 2021, 23(4): 8-13.
[4] 廖延雄. 炭疽邮件——发生于美国的恐怖主义事件. 畜牧与兽医, 2003, 35(7): 1-2.
Liao Y X. Anthrax mail: a terrorist event in the United States. Animal Husbandry & Veterinary Medicine, 2003, 35(7): 1-2.
[5] 王翠娥. 生物恐怖威胁特点及医学防御对策. 解放军医学杂志, 2005, 30(1): 15-18.
Wang C E. Characteristics and prophylactic strategy against bioterrorism. Medical Journal of Chinese PLA, 2005, 30(1): 15-18.
[6] Noyce R S, Lederman S, Evans D H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One, 2018, 13(1): e0188453.
doi: 10.1371/journal.pone.0188453
[7] Koblentz G D. The de novo synthesis of horsepox virus: implications for biosecurity and recommendations for preventing the reemergence of smallpox. Health Security, 2017, 15(6): 620-628.
doi: 10.1089/hs.2017.0061 pmid: 28836863
[8] Sanders B P, de Los Rios Oakes I, van Hoek V, et al. Cold-adapted viral attenuation (CAVA): highly temperature sensitive polioviruses as novel vaccine strains for a next generation inactivated poliovirus vaccine. PLoS Pathogens, 2016, 12(3): e1005483.
doi: 10.1371/journal.ppat.1005483
[9] Qian Y J, Pu X F, Yu Y, et al. Poliovirus serotype 2 and coxsackievirus A promote the natural recombination of poliovirus. Journal of Medical Virology, 2020, 92(3): 263-270.
doi: 10.1002/jmv.25620 pmid: 31674680
[10] Burns C C, Shaw J, Jorba J, et al. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. Journal of Virology, 2013, 87(9): 4907-4922.
doi: 10.1128/JVI.02954-12 pmid: 23408630
[11] 席念楚. 炭疽病离我们有多远. 中国家庭报, 2021-08-26(013).
Xi N C. How far is anthrax from us. China Family News, 2021-08-26(013).
[12] Pena-Gonzalez A, Rodriguez-R L M, Marston C K, et al. Genomic characterization and copy number variation of Bacillus anthracis plasmids pXO1 and pXO 2 in a historical collection of 412 strains. mSystems, 2018, 3(4): e00065-18.
[13] 李伟, 俞东征. 炭疽芽孢杆菌重要生物活性基因及其调控. 中华流行病学杂志, 2004, 25(5): 445-448.
Li W, Yu D Z. Important bioactive genes of Bacillus anthracis and their regulation. Chinese Journal of Epidemiology, 2004, 25(5): 445-448.
[14] Meyerson L A, Reaser J K. Bioinvasions, bioterrorism, and biosecurity. Frontiers in Ecology and the Environment, 2003, 1(6): 307-314.
doi: 10.1890/1540-9295(2003)001[0307:BBAB]2.0.CO;2
[15] 高海侠, 卢芳, 姜西迪, 等. 鼠伤寒沙门氏菌baeR过表达株的构建及其耐药性. 微生物学通报, 2022, 49(2): 659-678.
Gao H X, Lu F, Jiang X D, et al. Construction and antibiotic resistance of a Salmonella typhimurium strain overexpressing bae R. Microbiology China, 2022, 49(2): 659-678.
[16] Cenciarelli O, Riley P W, Baka A. Biosecurity threat posed by botulinum toxin. Toxins, 2019, 11(12): 681.
doi: 10.3390/toxins11120681
[17] 罗森, 陈芳红, 李涛, 等. B型肉毒毒素轻链的高效制备及活性鉴定. 生物技术通讯, 2018, 29(1): 59-63.
Luo S, Chen F H, Li T, et al. High-level expression and purification of BoNT/B LC and its identification. Letters in Biotechnology, 2018, 29(1): 59-63.
[18] Polito L, Bortolotti M, Battelli M G, et al. Ricin: an ancient story for a timeless plant toxin. Toxins, 2019, 11(6): 324.
doi: 10.3390/toxins11060324
[19] 边红. 糖基化修饰对蓖麻毒素A链毒性影响的研究. 长春: 吉林农业大学, 2018.
Bian H. Study on the effect of glycosylation modification on the toxicity of ricin a chain. Changchun: Jilin Agricultural University, 2018.
[20] 柴绍明. 蓖麻毒素B链可溶性表达及其工艺优化、纯化. 延吉: 延边大学, 2017.
Chai S M. Soluble expression of ricin toxin B chain and its process optimization and purication. Yanji: Yanbian University, 2017.
[21] Smith H O, Hutchison C A 3rd, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15440-15445.
[22] Lv X Q, Wu Y K, Gong M Y, et al. Synthetic biology for future food: research progress and future directions. Future Foods, 2021, 3: 100025.
doi: 10.1016/j.fufo.2021.100025
[23] 徐振伟. 构建安全之网: 美国生物国防计划评析. 太平洋学报, 2019, 27(8): 11-28.
Xu Z W. Building the security network: an analysis of the US biodefense plan. Pacific Journal, 2019, 27(8): 11-28.
[24] Koblentz G D. From biodefence to biosecurity: the Obama administration’s strategy for countering biological threats. International Affairs, 2012, 88(1): 131-148.
pmid: 22400153
[25] 高德胜, 周笑宇. 美国《国家生物安全防御战略》文本解读及其对我国生物安全建设的启示. 求是学刊, 2020, 47(2): 14-22.
Gao D S, Zhou X Y. Textual interpretation of national biosecurity defense strategy in the United States and its implications for the construction of biosecurity in China. Seeking Truth, 2020, 47(2): 14-22.
[26] Ye L L. The United States issues national biodefense strategy. Journal of Biosafety and Biosecurity, 2019, 1(1): 3-4.
doi: 10.1016/j.jobb.2019.01.004
[27] Dan Dupont. National Security Commission on Al approves final report. Inside U.S. Trade, 2021, 39(9): 7-8.
[28] 王丽英, 格根其日. 俄罗斯生物安全法述评. 口岸卫生控制, 2021, 26(1): 45-49.
Wang L Y, Ge G. Commentary on Russian biosafety law. Port Health Control, 2021, 26(1): 45-49.
[29] 宋琪, 丁陈君, 陈方. 俄罗斯生物安全法律法规体系建设简析. 世界科技研究与发展, 2020, 42(3): 288-297.
Song Q, Ding C J, Chen F. Brief analysis on construction of Russian biosafety law and regulation system. World Sci-Tech R & D, 2020, 42(3): 288-297.
[30] 吴晓燕, 陈方. 英国国家生物安全体系建设分析与思考. 世界科技研究与发展, 2020, 42(3): 265-275.
Wu X Y, Chen F. Analysis of biosafety system construction in the UK. World Sci-Tech R & D, 2020, 42(3): 265-275.
[31] Wang X. Era of biological security. Journal of Biosafety and Biosecurity, 2019, 1(1): 2.
[32] 胡韦唯. 工程师视域下合成生物学伦理问题探析. 合肥: 中国科学技术大学, 2021.
Hu W W. Analysis on the ethics of synthetic biology from the perspective of engineers. Hefei: University of Science and Technology of China, 2021.
[33] DiEuliis D. Key national security questions for the future of synthetic biology. The Fletcher Forum of World Affairs, 2019, 43(1): 127-143.
[34] 欧亚昆, 雷瑞鹏, 冀朋. 合成生物学的安全伦理问题及其对策初探. 生物产业技术, 2019(1): 91-94.
Ou Y K, Lei R P, Ji P. Discussion on safety ethics of synthetic biology and its countermeasures. Biotechnology & Business, 2019(1): 91-94.
[35] 钱万强, 墨宏山, 闫金定, 等. 合成生物学安全伦理研究现状. 中国基础科学, 2013, 15(4): 13-16.
Qian W Q, Mo H S, Yan J D, et al. The research status of synthetic biology safety ethics. China Basic Science, 2013, 15(4): 13-16.
[36] 田亦尧, 李欣冉. 生物技术伦理的法律规制逻辑转换——从生物安全立法展开. 东北大学学报(社会科学版), 2021, 23(3): 80-87.
Tian Y Y, Li X R. Transformation of the legal regulation logic of the biotechnology ethics: based on the biosecurity legislation. Journal of Northeastern University (Social Science), 2021, 23(3): 80-87.
[37] 本刊综合. 促进生物技术健康发展, 实现人与自然和谐共生——《中华人民共和国生物安全法》解读. 中国科技产业, 2021(5): 10-11.
Ben K. Promoting the healthy development of biotechnology and realizing the harmonious coexistence between man and nature —— Interpretation of the biosafety law of the people’s Republic of China. Science & Technology Industry of China, 2021(5): 10-11.
[38] Reis B Y, Kirby C, Hadden L E, et al. AEGIS: a robust and scalable real-time public health surveillance system. Journal of the American Medical Informatics Association, 2007, 14(5): 581-588.
pmid: 17600100
[39] 周李承, 文哲, 罗伟权, 等. 建立全球传染病疫情监测、预警及应对的3M-SPR体系, 防范和应对国门生物安全风险研究. 口岸卫生控制, 2021, 26(5): 27-30, 34.
Zhou L C, Wen Z, Luo W Q, et al. Research on the establishment of 3M-SPR system of global infectious disease surveillance, early warning and response to prevent and deal with biosafety risks at POEs in China. Port Health Control, 2021, 26(5): 27-30, 34.
[40] Besser J, Carleton H A, Gerner-Smidt P, et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection, 2018, 24(4): 335-341.
doi: 10.1016/j.cmi.2017.10.013
[41] van Dijk E L, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9): 418-426.
doi: 10.1016/j.tig.2014.07.001 pmid: 25108476
[42] 云妙婷, 刘琼, 王秉. 面向生物安全治理的生物安全情报支持体系研究. 图书馆杂志, 2022, 41(9): 12-20.
Yun M T, Liu Q, Wang B. Research on biosafety and biosecurity intelligence support system for biosafety and biosecurity governance. Library Journal, 2022, 41(9): 12-20.
[43] 王秉. 生物安全情报: 一个安全情报学的重要新议题. 情报杂志, 2020, 39(10): 45-50, 5.
Wang B. Bio-security & safety intelligence: a significant new topic in security & safety intelligence science. Journal of Intelligence, 2020, 39(10): 45-50, 5.
[44] 王明程, 张冬冬. 美国生物监测情报体系建设及启示研究. 情报杂志, 2021, 40(3): 23-31.
Wang M C, Zhang D D. Research on the construction and enlightenment of American biosurveillance intelligence system. Journal of Intelligence, 2021, 40(3): 23-31.
[45] 余文水, 蔡志明. 合成生物学在医学领域的研究进展. 医学综述, 2013, 19(9): 1558-1560.
Yu W S, Cai Z M. Research development of syhthetic biology in medical field. Medical Recapitulate, 2013, 19(9): 1558-1560.
[46] 冯晴晴, 张天鲛, 赵潇, 等. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿. 合成生物学, 2022, 3(2): 260-278.
doi: 10.12211/2096-8280.2021-035
Feng Q Q, Zhang T J, Zhao X, et al. Synthetic nanobiology: fusion of synthetic biology and nanobiology. Synthetic Biology Journal, 2022, 3(2): 260-278.
doi: 10.12211/2096-8280.2021-035
[1] 郭彦彤,刘仲明,张海燕,张宝. 分子即时检测(POCT)技术及其在新发传染病中的应用*[J]. 中国生物工程杂志, 2022, 42(9): 50-57.
[2] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[3] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[4] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[5] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[6] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[7] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[8] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[9] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[10] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[11] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[12] 马丽丽,易盼盼,敖妮花,焦洪涛,雷瑞鹏,刘欢. 基于学科类别和富集分析的生物安全研究领域学科交叉研究*[J]. 中国生物工程杂志, 2021, 41(12): 116-124.
[13] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[14] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[15] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.