Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 43-53    DOI: 10.13523/j.cb.2302031
综述     
CAR-T在血液类恶性肿瘤中的研究进展*
董蒨蒨,李玉淼**()
山西高等创新研究院 太原 030032
Research Advances in CAR-T Cell Immunotherapy in Hematologic Malignancies
DONG Qian-qian,LI Yu-miao**()
Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
 全文: PDF(1654 KB)   HTML
摘要:

近年来,我国血液系统恶性肿瘤的发病率逐年上升。目前血液系统恶性肿瘤的治疗以化疗、骨髓移植为主,化疗副作用大且损伤患者的正常组织器官,而骨髓移植面临着配型、排异反应等一系列问题。嵌合抗原受体T细胞免疫治疗,即CAR-T,近年来在恶性肿瘤治疗中取得了较大的突破和进展,尤其在血液类肿瘤的临床治疗中获得很大成就。但CAR-T也面临缺乏特异性靶点、肿瘤微环境抑制及实体瘤浸润效果不佳等问题。就CAR-T 细胞的原理、发展历史、目前的研究进展及存在问题作简单介绍,同时对CAR-T在血液类恶性肿瘤临床应用现状及前景进行详细总结和讨论,最后对CAR-T在实体瘤中的研究困境及方向进行概述、探讨,为后续相关研究提供参考依据。

关键词: CAR-T细胞血液肿瘤淋巴肿瘤细胞免疫治疗肿瘤治疗    
Abstract:

In recent years, the incidence rate of hematological malignancies has increased year by year in China. At present, chemotherapy and bone marrow transplantation are the main methods for treating hematological malignancies. Chemotherapy has significant side effects and damages the normal tissues and organs of patients, and bone marrow transplantation faces a series of problems such as typing and rejection reactions. Chimeric antigen receptor modifies T cells, namely CAR T cell immunotherapy, which has made great breakthrough and progress in the treatment of malignant tumors in recent years, especially in the clinical treatment of hematological tumors. However, CAR-T cell immunotherapy also faces the problems of a lack of specific targets, inhibition of tumor microenvironment and poor effect of solid tumor invasion. This article briefly introduces the principle, development history, current research progress and existing problems of CAR-T cells. Meanwhile, the clinical application status and prospect of CAR-T cells in hematologic malignancies are summarized and discussed in detail. Finally, we summarize and discuss the research difficulties and directions of CAR-T therapy in solid tumors, so as to provide a reference for subsequent related studies.

Key words: CAR-T cell    Hematological tumors    Lymphatic tumors    Cell immunotherapy    Tumor treatment
收稿日期: 2023-02-17 出版日期: 2023-07-04
ZTFLH:  Q291  
基金资助: * 山西转型综合改革示范区科技创新项目(YDZJSX2021C037)
通讯作者: **电子信箱:liyumiao29@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董蒨蒨
李玉淼

引用本文:

董蒨蒨, 李玉淼. CAR-T在血液类恶性肿瘤中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 43-53.

DONG Qian-qian, LI Yu-miao. Research Advances in CAR-T Cell Immunotherapy in Hematologic Malignancies. China Biotechnology, 2023, 43(6): 43-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302031        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/43

图1  CAR-T第一信号、第二信号通路图
图2  CAR-T细胞生产及过程质量控制流程图
图3  CAR结构示意图
图4  历代CAR结构发展、演变示意图
图5  血液类恶性肿瘤分类
机构/研发人员 适应证 靶点 患者数量 疗效 参考文献
Maude等 复发/难治急性B淋巴细胞白血病 CD19 30 90%患者达到完全缓解,6个月的无事件生存率为67%,总生存率为78% [19]
北京博仁医院童春容团队 复发/难治急性B淋巴细胞白血病 CD19 51 90%患者达到完全缓解,联合CD22 CAR-T治疗,缓解率可再达71%,总体治愈率超过60% [20]
华中科技大学同济医院周剑峰团队 复发/难治急性B淋巴细胞白血病 CD19/
CD22
42 完全缓解率为90.5%,部分缓解率为7.1%;6个月无事件生存率为60.5%,总生存率为80.0%;12个月无事件生存率为41.2%,总生存率为57.1% [21]
北京博仁医院童春容、刘双又团队 复发/难治急性B淋巴细胞白血病 CD19 19 13名患者完全缓解,完全缓解率达68% [22]
Munshi等 复发/难治性骨髓瘤 BCMA 128 94名患者(73%)对于治疗有反应,其中42名(33%)患者获得了完全缓解。在完全缓解的42名患者中有33名(79%)患者处于MRD阴性状态,中位无进展生存期为8.8个月。 [23]
传奇生物和杨森 复发/难治性骨髓瘤 BCMA 97 97名接受治疗的患者ORR高达94.8%。生存数据方面,6个月无事件生存率为87.4%,总生存率为93.8%。 [24]
徐州医科大学血液病研究所徐开林、李振宇团队 复发/难治性骨髓瘤 GPRC5D 33 总治愈率为91%,11名(33%)患者为严格意义上的完全缓解,10名(30%)患者得到完全缓解,4名(12%)患者得到非常好的部分缓解,5名(15%)患者得到部分缓解。 [25]
徐州医科大学血液病研究所徐开林团队 复发/难治性骨髓瘤 BCMA/
CD19
69 总有效率为92%(57/62),37名患者(60%)得到完全缓解,77%(43/56)的患者处于MRD阴性状态,中位无进展生存期为18.3个月。 [26]
宾夕法尼亚大学Porter团队 复发或难治慢性淋巴细胞白血病 CD19 14 14例患者中4例(29%)获得完全缓解,4例为部分缓解(29%),所有患者18个月总生存率为71%,无进展生存率为28.6% [27]
解放军总医院韩为东团队 弥散大B细胞性淋巴瘤/惰性B细胞恶性肿瘤 CD20 11 6例(55%)获得完全缓解,3例(27%)获得部分缓解,2例(18%)疾病稳定,中位无进展生存期大于6个月 [28]
表1  CAR-T在血液类恶性肿瘤中的临床应用
[1] Sami S A, Darwish N H E, Barile A N M, et al. Current and future molecular targets for acute myeloid leukemia therapy. Current Treatment Options in Oncology, 2020, 21(1): 3.
doi: 10.1007/s11864-019-0694-6 pmid: 31933183
[2] Bach P B, Giralt S A, Saltz L B. FDA approval of tisagenlecleucel: promise and complexities of a $475 000 cancer drug. JAMA, 2017, 318(19): 1861-1862.
doi: 10.1001/jama.2017.15218
[3] Srivastava S, Riddell S R. Chimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacy. Journal of Immunology (Baltimore, Md: 1950), 2018, 200(2): 459-468.
[4] Leick M B, Maus M V. CAR-T cells beyond CD19, UnCAR-Ted territory. American Journal of Hematology, 2019, 94(S1): S34-S41.
doi: 10.1002/ajh.25398
[5] Zhao Z R, Grégoire C, Oliveira B, et al. Challenges and opportunities of CAR T-cell therapies for CLL. Seminars in Hematology, 2023, 60(1): 25-33.
doi: 10.1053/j.seminhematol.2023.01.002 pmid: 37080707
[6] Chavez J C, Locke F L. CAR T cell therapy for B-cell lymphomas. Best Practice & Research Clinical Haematology, 2018, 31(2): 135-146.
[7] Bagley S J, O’Rourke D M. Clinical investigation of CAR T cells for solid tumors: lessons learned and future directions. Pharmacology & Therapeutics, 2020, 205: 107419.
[8] Rappuoli R, Siena E, Finco O. Will systems biology deliver its promise and contribute to the development of new or improved vaccines? systems biology views of vaccine innate and adaptive immunity. Cold Spring Harbor Perspectives in Biology, 2018, 10(8): a029256.
doi: 10.1101/cshperspect.a029256
[9] Vormittag P, Gunn R, Ghorashian S, et al. A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 2018, 53: 164-181.
doi: S0958-1669(17)30194-5 pmid: 29462761
[10] Noaks E, Peticone C, Kotsopoulou E, et al. Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing. Molecular Therapy - Methods & Clinical Development, 2021, 20: 675-687.
[11] Li Y H, Huo Y, Yu L, et al. Quality control and nonclinical research on CAR-T cell products: general principles and key issues. Engineering, 2019, 5(1): 122-131.
doi: 10.1016/j.eng.2018.12.003
[12] Khalil D N, Smith E L, Brentjens R J, et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 2016, 13(5): 273-290.
doi: 10.1038/nrclinonc.2016.25 pmid: 26977780
[13] Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discovery, 2013, 3: 388-398.
doi: 10.1158/2159-8290.CD-12-0548 pmid: 23550147
[14] Chmielewski M, Abken H. TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation. Advances in Cell and Gene Therapy, 2020, 3(3): e84.
[15] Kagoya Y, Tanaka S, Guo T X, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nature Medicine, 2018, 24(3): 352-359.
doi: 10.1038/nm.4478 pmid: 29400710
[16] Poirot L, Jahangiri B, Duchateau P, et al. Allogeneic CAR T-cells resistant to both T- and NK-cell cytotoxicity. Cytotherapy, 2020, 22(5): S134-S135.
[17] Poppema S. Genetics, biology and classification of non-Hodgkin’s lymphomas (NHL). European Journal of Cancer Supplements, 2003, 1(6): 5-14.
doi: 10.1016/S1359-6349(03)90004-8
[18] Schwarzbich M A, Witzens-Harig M. Cellular immunotherapy in B-cell malignancy. Oncology Research and Treatment, 2017, 40(11): 674-681.
doi: 10.1159/000481946
[19] 林才瑶, Kalim M, 梁可莹, 等. CAR-T疗法及其在肿瘤免疫治疗中的应用进展. 中国细胞生物学学报, 2018, 40(3): 412-417.
Lin C Y, Kalim M, Liang K Y, et al. Advances of CAR-T immunotherapy for cancer. Chinese Journal of Cell Biology, 2018, 40(3): 412-417.
[20] Pan J, Niu Q, Deng B P, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia, 2019, 33(12): 2854-2866.
doi: 10.1038/s41375-019-0488-7 pmid: 31110217
[21] Wang N, Hu X L, Cao W Y, et al. Efficacy and safety of CAR19/ 22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood, 2020, 135(1): 17-27.
doi: 10.1182/blood.2019000017 pmid: 31697824
[22] An L H, Lin Y H, Deng B P, et al. Humanized CD19 CAR-T cells in relapsed/refractory B-ALL patients who relapsed after or failed murine CD19 CAR-T therapy. BMC Cancer, 2022, 22: 393.
doi: 10.1186/s12885-022-09489-1 pmid: 35410148
[23] Munshi N C, Anderson L D Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. New England Journal of Medicine, 2021, 384(8): 705-716.
doi: 10.1056/NEJMoa2024850
[24] Usmani S Z, Martin T, Berdeja J G, et al. Poster: MM-181 CARTITUDE-1: two-year post last patient in (LPI) results from the phase 1b/2 study of ciltacabtagene autoleucel (cilta-cel), a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor T (CAR-T) cell therapy, in patients with relapsed/refractory multiple myeloma (RRMM). Clinical Lymphoma Myeloma and Leukemia, 2022, 22: S179.
[25] Xia J Y, Li H J, Yan Z L, et al. Anti-G protein-coupled receptor, class C group 5 member D chimeric antigen receptor T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase Ⅱ trial. J Clin Oncol, 2023, 41: 2583-2593.
[26] Wang Y, Cao J, Gu W Y, et al. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma. J Clin Oncol, 2022, 40: 2246-2256.
doi: 10.1200/JCO.21.01676
[27] Shouse G, Budde E, Forman S. Chimeric antigen receptor (CAR) T cell therapy for B-acute lymphoblastic leukemia (B-ALL). Cancer Treatment and Research. Cham: Springer International Publishing, 2021: 179-196.
[28] Zhang W Y, Wang Y, Guo Y L, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma:an early phase IIa trial report. Signal Transduction and Targeted Therapy, 2016, 1(1): 1-9.
[29] Arabi F, Torabi-Rahvar M, Shariati A, et al. Antigenic targets of CAR T cell therapy. A retrospective view on clinical trials. Experimental Cell Research, 2018, 369(1): 1-10.
[30] Yu J X, Hubbard-Lucey V M, Tang J. The global pipeline of cell therapies for cancer. Nature Reviews Drug Discovery, 2019, 18(11): 821-822.
doi: 10.1038/d41573-019-00090-z pmid: 31673124
[31] Cappell K M, Kochenderfer J N. Long-term outcomes following CAR T cell therapy: what we know so far. Nature Reviews Clinical Oncology, 2023. DOI:10.1038/s41571-023-00754-1.
doi: 10.1038/s41571-023-00754-1
[32] Aparicio-Pérez C, Carmona M, Benabdellah K, et al. Failure of ALL recognition by CAR T cells: a review of CD 19-negative relapses after anti-CD 19 CAR-T treatment in B-ALL. Frontiers in Immunology, 2023, 14: 1165870.
doi: 10.3389/fimmu.2023.1165870
[33] Shah N N, Maatman T, Hari P, et al. Multi targeted CAR-T cell therapies for B-cell malignancies. Frontiers in Oncology, 2019, 9: 146.
doi: 10.3389/fonc.2019.00146 pmid: 30915277
[34] Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. The New England Journal of Medicine, 2019, 380(18): 1726-1737.
doi: 10.1056/NEJMoa1817226 pmid: 31042825
[35] Raghunandan S, Pauly M, Blum W G, et al. BCMA CAR-T induces complete and durable remission in refractory plasmablastic lymphoma. Journal for Immunotherapy of Cancer, 2023, 11(5): e006684.
doi: 10.1136/jitc-2023-006684
[36] Jagannath S, Heffner L T, Ailawadhi S, et al. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clinical Lymphoma Myeloma and Leukemia, 2019, 19(6): 372-380.
doi: 10.1016/j.clml.2019.02.006
[37] Poels R, Drent E, Lameris R, et al. Preclinical evaluation of invariant natural killer T cells modified with CD 38 or BCMA chimeric antigen receptors for multiple myeloma. International Journal of Molecular Sciences, 2021, 22(3): 1096.
doi: 10.3390/ijms22031096
[38] Attianese G M P G, Hoyos V, Savoldo B, et al. Generation of a new chimeric antigen receptor (CAR) to target CD23 expressed on chronic lymphocytic leukemia (B-CLL) cells. Molecular Therapy, 2009, 17: S90-S91.
[39] Chiang C L, Goswami S, Frissora F W, et al. ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood, 2019, 134(5): 432-444.
doi: 10.1182/blood.2018882290 pmid: 31151986
[40] Giordano Attianese G M, Marin V, Hoyos V, et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD 23 chimeric antigen receptor. Blood, 2011, 117(18): 4736-4745.
doi: 10.1182/blood-2010-10-311845 pmid: 21406718
[41] Jiang V C, Liu Y, Jordan A, et al. The antibody drug conjugate VLS-101 targeting ROR1 is effective in CAR T-resistant mantle cell lymphoma. Journal of Hematology & Oncology, 2021, 14(1): 1-4.
[42] Ugo T, Elvira P, Germana C. CD123 as a therapeutic target in the treatment of hematological malignancies. Cancers, 2019, 11(9): 1358.
doi: 10.3390/cancers11091358
[43] Li S S, Tao Z F, Xu Y X, et al. CD33-specific chimeric antigen receptor T cells with different Co-stimulators showed potent anti-leukemia efficacy and different phenotype. Human Gene Therapy, 2018, 29(5): 626-639.
doi: 10.1089/hum.2017.241 pmid: 29409351
[44] Abreu T R, Fonseca N A, Gonçalves N, et al. Current challenges and emerging opportunities of CAR-T cell therapies. Journal of Controlled Release, 2020, 319: 246-261.
doi: S0168-3659(19)30766-7 pmid: 31899268
[45] Bonifant C L, Jackson H J, Brentjens R J, et al. Toxicity and management in CAR T-cell therapy. Molecular Therapy - Oncolytics, 2016, 3: 16011.
doi: 10.1038/mto.2016.11
[46] Cao J X, Wang H, Gao W J, et al. The incidence of cytokine release syndrome and neurotoxicity of CD 19 chimeric antigen receptor-T cell therapy in the patient with acute lymphoblastic leukemia and lymphoma. Cytotherapy, 2020, 22(4): 214-226.
doi: 10.1016/j.jcyt.2020.01.015
[47] Gao S, Yang D J, Fang Y, et al. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics, 2019, 9(1): 126-151.
doi: 10.7150/thno.29431 pmid: 30662558
[48] Zettler M E, Feinberg B A, Phillips E G Jr, et al. Real-world adverse events associated with CAR T-cell therapy among adults age≥65 years. Journal of Geriatric Oncology, 2021, 12(2): 239-242.
doi: 10.1016/j.jgo.2020.07.006
[49] Su Y, Yuan C, Shi M. Editorial: Screening and verification of new targets for CAR-T immunotherapy in cancer. Frontiers in Immunology, 2023, 14: 1189773.
doi: 10.3389/fimmu.2023.1189773
[50] Tang X Y, Ding Y S, Zhou T, et al. Tumor-tagging by oncolytic viruses: a novel strategy for CAR-T therapy against solid tumors. Cancer Letters, 2021, 503: 69-74.
doi: 10.1016/j.canlet.2021.01.014
[51] Grada Z, Hegde M, Byrd T, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Molecular Therapy - Nucleic Acids, 2013, 2: e105.
doi: 10.1038/mtna.2013.32
[52] Kloss C C, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nature Biotechnology, 2013, 31(1): 71-75.
doi: 10.1038/nbt.2459 pmid: 23242161
[53] Cho J H, Collins J J, Wong W W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell, 2018, 173(6): 1426-1438.e11.
doi: S0092-8674(18)30362-3 pmid: 29706540
[54] Liu S N, Zhang X Y, Dai H P, et al. Which one is better for refractory/relapsed acute B-cell lymphoblastic leukemia: single-target (CD19) or dual-target (tandem or sequential CD19/CD22) CAR T-cell therapy? Blood Cancer Journal, 2023, 13: 60.
doi: 10.1038/s41408-023-00819-5 pmid: 37095120
[55] Kloss C C, Lee J, Zhang A, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Molecular Therapy, 2018, 26(7): 1855-1866.
doi: S1525-0016(18)30206-5 pmid: 29807781
[56] Cherkassky L, Morello A, Villena-Vargas J, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. Journal of Clinical Investigation, 2016, 126(8): 3130-3144.
doi: 10.1172/JCI83092 pmid: 27454297
[57] Moon E, Carpenito C, Sun J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clinical Cancer Research, 2011, 17: 4719-4730.
doi: 10.1158/1078-0432.CCR-11-0351 pmid: 21610146
[1] 林鹏, 钱菁, 冯强, 雷琎, 江亚, 杨举伦. 单链抗体的制备及其在肿瘤诊疗中的应用*[J]. 中国生物工程杂志, 2023, 43(6): 76-86.
[2] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[3] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[4] 王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[7] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[8] 景园雅, 陈平, 常建锋, 陈苏. 自噬与癌症[J]. 中国生物工程杂志, 2015, 35(11): 70-76.
[9] 丁笠, 王秀云, 齐海迪, 李海鑫, 周雅琼, 陈耀祖, 张娟, 王旻. 抗血管内皮生长因子受体2双价单链抗体的构建表达及其活性研究[J]. 中国生物工程杂志, 2011, 31(8): 1-6.
[10] 崔巍,沈秉谦,杨胜利. 树突状细胞对海藻酸钙纳米胶囊的吞噬作用与功能诱导[J]. 中国生物工程杂志, 2008, 28(7): 26-31.
[11] 杨珺, 蔡绍皙, 邹全明. IL-24选择性诱导肿瘤细胞凋亡机制[J]. 中国生物工程杂志, 2005, 25(9): 5-9.
[12] 郭蕾, 杨奎, 卢圣栋. EGF受体Ⅲ型突变体在肿瘤治疗中的研究进展[J]. 中国生物工程杂志, 2003, 23(3): 11-14.
[13] 冯怡. 内皮抑素与肿瘤治疗[J]. 中国生物工程杂志, 2001, 21(6): 70-73.