Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (7): 62-68    DOI: 10.13523/j.cb.2202034
综述     
核酸适配体在三阴性乳腺癌诊疗中的研究进展*
姚芷昕1,李婉明2,**()
1. 中国医科大学生命科学学院 沈阳 110122
2. 中国医科大学生命科学学院 卫生部细胞生物学重点实验室 医学细胞生物学教育部重点实验室 分子细胞生物学教研室 沈阳 110122
Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer
Zhi-xin YAO1,Wan-ming LI2,**()
1. School of Life Sciences, China Medical University, Shenyang 110122, China
2. Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang 110122, China
 全文: PDF(663 KB)   HTML
摘要:

乳腺癌是女性高发恶性肿瘤,三阴性乳腺癌(triple-negative breast cancer, TNBC)恶性程度极高,且发病机制复杂,是乳腺癌分型中预后最差的类型,但目前其早期筛查和诊断的敏感度仍处在较低水平。因此,亟须通过应用具有高度特异性的肿瘤标志物分子探针,实现其早期诊断和治疗。核酸适配体是在人工合成的随机单链核酸序列文库中,通过指数富集的配体系统进化技术(systematic evolution of ligands by exponential enrichment, SELEX)筛选获得的寡核苷酸序列。高效的分子识别能力使其成为最具潜力的生物靶向分子,在肿瘤诊断及治疗中具有广阔的应用前景。目前,通过筛选已获得了多种靶向TNBC细胞的核酸适配体。重点综述基于SELEX及其衍生技术筛选TNBC相关核酸适配体的新进展,以及核酸适配体在TNBC诊断和治疗中的应用,为相关研究提供参考。

关键词: 三阴性乳腺癌核酸适配体指数富集的配体系统进化技术肿瘤诊断肿瘤治疗    
Abstract:

Breast cancer is a common malignant tumor mostly occurring in women. Triple-negative breast cancer (TNBC) is highly malignant and has a complex pathogenesis, which is the worst prognosis type of breast cancer classification. However, the sensitivity of its early screening and diagnosis is still at a low level. Therefore, it is urgent to achieve its early diagnosis and treatment by applying highly specific molecular probes for detection of tumor markers. Aptamer is a class of oligonucleotide screened by SELEX (systematic evolution of ligands by exponential enrichment) technology in a synthetic library of random single-chain nucleic acid sequences. With efficient molecular recognition ability, it has become the most potential bio-targeting molecule and has a wide application prospect in tumor diagnosis and treatment. Currently, several aptamers targeting TNBC cells have been obtained by screening. Here, the new progress of screening TNBC related aptamers based on SELEX and its derivatives, as well as the application of aptamers in the diagnosis and treatment of TNBC are reviewed, to provide a reference for related research.

Key words: Triple-negative breast cancer(TNBC)    Aptamers    SELEX    Cancer diagnosis    Cancer therapy
收稿日期: 2022-02-21 出版日期: 2022-08-03
ZTFLH:  R737.9  
基金资助: *辽宁省自然科学基金(2020-MS-164);沈阳市中青年科技创新人才支持计划(RC190261)
通讯作者: 李婉明     E-mail: wmli@cmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚芷昕
李婉明

引用本文:

姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.

Zhi-xin YAO,Wan-ming LI. Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer. China Biotechnology, 2022, 42(7): 62-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2202034        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I7/62

适配体 靶标 SELEX方法 正向筛选 反向筛选 参考文献
CL4 EGFR Cell-SELEX A549细胞 H460细胞 [18]
Gint4.T PDGFRβ Cell-SELEX U87MG细胞 [19]
MUC1 Mucin-1 蛋白-SELEX Mucin-1 [22]
AS1411 Nucleolin 非SELEX技术 [25]
XQ-P3 PD-L1 Cell-SELEX MDA-MB-231 PD-L1过表达细胞 MDA-MB-231 PD-L1敲除细胞 [27]
M3 未知 Cell-SELEX MDA-MB-231细胞 MCF-7细胞 [28]
PDGC21-T CD49c Cell-SELEX BGC-823细胞 SGC-7901细胞 [30-31]
表1  三阴性乳腺癌相关适配体
图1  核酸适配体在TNBC中的应用
[1] Bryan B B, Schnitt S J, Collins L C. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Modern pathology, 2006, 19(5): 617-621.
doi: 10.1038/modpathol.3800570
[2] Kuang H H, Schneiderman Z, Shabana A M, et al. Effect of an alkyl spacer on the morphology and internalization of MUC 1 aptamer-naphthalimide amphiphiles for targeting and imaging triple negative breast cancer cells. Bioengineering & Translational Medicine, 2020, 6(1): e10194.
[3] Camorani S, Fedele M, Zannetti A, et al. TNBC challenge: oligonucleotide aptamers for new imaging and therapy modalities. Pharmaceuticals (Basel, Switzerland), 2018, 11(4): 123.
[4] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.
doi: 10.1038/346818a0
[5] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510.
pmid: 2200121
[6] Morris K N, Jensen K B, Julin C M, et al. High affinity ligands from in vitro selection: complex targets. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(6): 2902-2907.
[7] Rajendran M, Ellington A D. In vitro selection of molecular beacons. Nucleic Acids Research, 2003, 31(19): 5700-5713.
pmid: 14500834
[8] Li S H, Xu H, Ding H M, et al. Identification of an aptamer targeting hnRNP A 1 by tissue slide-based SELEX. The Journal of Pathology, 2009, 218(3): 327-336.
doi: 10.1002/path.2543
[9] Mendonsa S D, Bowser M T. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry, 2004, 76(18): 5387-5392.
pmid: 15362896
[10] Hicke B J, Marion C, Chang Y F, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry, 2001, 276(52): 48644-48654.
doi: 10.1074/jbc.M104651200 pmid: 11590140
[11] Chen F, Zeng J, Sun P, et al. Selection and identification of DNA aptamers against DC-SIGN. Chinese Journal of Cellular and Molecular Immunology, 2008, 24(12): 1133-1136.
[12] Mayer G, Ahmed M S L, Dolf A, et al. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nature Protocols, 2010, 5(12): 1993-2004.
doi: 10.1038/nprot.2010.163
[13] Nelissen F H T, Peeters W J M, Roelofs T P, et al. Improving breast cancer treatment specificity using aptamers obtained by 3D cell-SELEX. Pharmaceuticals (Basel, Switzerland), 2021, 14(4): 349.
[14] Ha S J, Park J H, Lee B B, et al. Label-free direct detection of saxitoxin based on a localized surface plasmon resonance aptasensor. Toxins, 2019, 11(5): 274.
doi: 10.3390/toxins11050274
[15] D’Ippolito E, Plantamura I, Bongiovanni L, et al. miR-9 and miR-200 regulate PDGFRβ-mediated endothelial differentiation of tumor cells in triple-negative breast cancer. Cancer Research, 2016, 76(18): 5562-5572.
doi: 10.1158/0008-5472.CAN-16-0140
[16] Park H S, Jang M H, Kim E J, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Modern Pathology, 2014, 27(9): 1212-1222.
doi: 10.1038/modpathol.2013.251
[17] Camorani S, Crescenzi E, Colecchia D, et al. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget, 2015, 6(35): 37570-37587.
doi: 10.18632/oncotarget.6066 pmid: 26461476
[18] Esposito C L, Passaro D, Longobardo I, et al. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One, 2011, 6(9): e24071.
doi: 10.1371/journal.pone.0024071
[19] Camorani S, Esposito C L, Rienzo A, et al. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Molecular Therapy, 2014, 22(4): 828-841.
doi: 10.1038/mt.2013.300 pmid: 24566984
[20] Camorani S, Crescenzi E, Gramanzini M, et al. Aptamer-mediated impairment of EGFR-integrin αvβ 3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers. Scientific Reports, 2017, 7: 46659.
doi: 10.1038/srep46659 pmid: 28425453
[21] Camorani S, Hill B S, Collina F, et al. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics, 2018, 8(18): 5178-5199.
doi: 10.7150/thno.27798 pmid: 30429893
[22] Ferreira C S M, Matthews C S, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 2006, 27(6): 289-301.
doi: 10.1159/000096085
[23] Ferreira C S M, Papamichael K, Guilbault G, et al. DNA aptamers against the MUC 1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumours. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1039-1050.
doi: 10.1007/s00216-007-1470-1 pmid: 17694298
[24] Luo S Y, Wang S M, Luo N, et al. The application of aptamer 5TR1 in triple negative breast cancer target therapy. Journal of Cellular Biochemistry, 2018, 119(1): 896-908.
doi: 10.1002/jcb.26254
[25] Bates P J, Laber D A, Miller D M, et al. Discovery and development of the G-rich oligonucleotide AS 1411 as a novel treatment for cancer. Experimental and Molecular Pathology, 2009, 86(3): 151-164.
doi: 10.1016/j.yexmp.2009.01.004
[26] Soundararajan S, Chen W W, Spicer E K, et al. The nucleolin targeting aptamer AS 1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Research, 2008, 68(7): 2358-2365.
doi: 10.1158/0008-5472.CAN-07-5723 pmid: 18381443
[27] Wu X Q, Li F F, Li Y S, et al. A PD-L1 aptamer selected by loss-gain cell-SELEX conjugated with paclitaxel for treating triple-negative breast cancer. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2020, 26: e925583.
[28] Li W M, Zhou L L, Zheng M, et al. Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by cell-SELEX. Molecular Therapy-Nucleic Acids, 2018, 12: 707-717.
doi: 10.1016/j.omtn.2018.07.008
[29] Camorani S, Granata I, Collina F, et al. Novel aptamers selected on living cells for specific recognition of triple-negative breast cancer. iScience, 2020, 23(4): 100979.
doi: 10.1016/j.isci.2020.100979
[30] Chen Z H, Zeng Z H, Wan Q Y, et al. Targeted immunotherapy of triple-negative breast cancer by aptamer-engineered NK cells. Biomaterials, 2022, 280: 121259.
doi: 10.1016/j.biomaterials.2021.121259
[31] Li W M, Wang S, Zhou L L, et al. An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue. Talanta, 2019, 199: 634-642.
doi: 10.1016/j.talanta.2019.03.016
[32] Wan Q Y, Zeng Z H, Qi J J, et al. Aptamer targets triple-negative breast cancer through specific binding to surface CD49c. Cancers, 2022, 14(6): 1570.
doi: 10.3390/cancers14061570
[33] Zhang C Q, Zhao Y, Zhao N N, et al. NIRF optical/PET dual-modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye. Contrast Media & Molecular Imaging, 2018, 2018: 4979746.
[34] Kim M W, Jeong H Y, Kang S J, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics, 2019, 9(3): 837-852.
doi: 10.7150/thno.30228
[35] Fang K J, Wang L F, Huang H Y, et al. Construction of nucleolin-targeted lipid nanobubbles and contrast-enhanced ultrasound molecular imaging in triple-negative breast cancer. Pharmaceutical Research, 2020, 37(7): 145.
doi: 10.1007/s11095-020-02873-1
[36] Santos do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, et al. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. International Journal of Nanomedicine, 2016, 12: 53-60.
doi: 10.2147/IJN.S118482
[37] Tay T K Y, Tan P H. Liquid biopsy in breast cancer: a focused review. Archives of Pathology & Laboratory Medicine, 2021, 145(6): 678-686.
[38] Li F F, Lu J, Liu J, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nature Communications, 2017, 8: 1390.
doi: 10.1038/s41467-017-01565-6
[39] Vlodavsky I, Friedmann Y, Elkin M, et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nature Medicine, 1999, 5(7): 793-802.
pmid: 10395325
[40] Duan T, Xu Z B, Sun F M, et al. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomedicine & Pharmacotherapy, 2019, 117: 109121.
doi: 10.1016/j.biopha.2019.109121
[41] Agnello L, Tortorella S, d’Argenio A, et al. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. Journal of Experimental & Clinical Cancer Research: CR, 2021, 40(1): 239.
[42] Prodeus A, Abdul-Wahid A, Fischer N W, et al. Targeting the PD-1/PD-L 1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Molecular Therapy-Nucleic Acids, 2015, 4: e237.
doi: 10.1038/mtna.2015.11
[43] Camorani S, Passariello M, Agnello L, et al. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. Journal of Experimental & Clinical Cancer Research: CR, 2020, 39(1): 180.
[44] Gilboa-Geffen A, Hamar P, Le M T N, et al. Gene knockdown by EpCAM aptamer-siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells. Molecular Cancer Therapeutics, 2015, 14(10): 2279-2291.
doi: 10.1158/1535-7163.MCT-15-0201-T pmid: 26264278
[45] Liu H R, Mai J H, Shen J L, et al. A novel DNA aptamer for dual targeting of polymorphonuclear myeloid-derived suppressor cells and tumor cells. Theranostics, 2018, 8(1): 31-44.
doi: 10.7150/thno.21342
[1] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[2] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[3] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[4] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[5] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[6] 苏艺,蒋灵丽,林俊生. 小分子靶标与其核酸适配体亲和力的表征方法 *[J]. 中国生物工程杂志, 2019, 39(11): 96-104.
[7] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[8] 景园雅, 陈平, 常建锋, 陈苏. 自噬与癌症[J]. 中国生物工程杂志, 2015, 35(11): 70-76.
[9] 周妮, 陈丹, 姚冬生, 谢春芳, 刘大岭. 莱克多巴胺核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2014, 34(1): 42-49.
[10] 陈丹, 姚冬生, 谢春芳, 刘大岭. 四环素核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2013, 33(11): 56-62.
[11] 丁笠, 王秀云, 齐海迪, 李海鑫, 周雅琼, 陈耀祖, 张娟, 王旻. 抗血管内皮生长因子受体2双价单链抗体的构建表达及其活性研究[J]. 中国生物工程杂志, 2011, 31(8): 1-6.
[12] 崔巍,沈秉谦,杨胜利. 树突状细胞对海藻酸钙纳米胶囊的吞噬作用与功能诱导[J]. 中国生物工程杂志, 2008, 28(7): 26-31.
[13] 杨珺, 蔡绍皙, 邹全明. IL-24选择性诱导肿瘤细胞凋亡机制[J]. 中国生物工程杂志, 2005, 25(9): 5-9.
[14] 郭蕾, 杨奎, 卢圣栋. EGF受体Ⅲ型突变体在肿瘤治疗中的研究进展[J]. 中国生物工程杂志, 2003, 23(3): 11-14.
[15] 冯怡. 内皮抑素与肿瘤治疗[J]. 中国生物工程杂志, 2001, 21(6): 70-73.