Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 76-86    DOI: 10.13523/j.cb.2301026
综述     
单链抗体的制备及其在肿瘤诊疗中的应用*
林鹏1,2**,钱菁1,2,3**,冯强2,雷琎2,江亚2,杨举伦2,***()
1 昆明理工大学医学院 昆明 650500
2 中国人民解放军联勤保障部队第920医院病理科 昆明 650500
3 昆明理工大学生命科学与技术学院 昆明 650032
Production of Single-chain Fragment Variable and Its Application in Tumor Diagnosis and Treatment
LIN Peng1,2,QIAN Jing1,2,3,FENG Qiang2,LEI Jing2,JIANG Ya2,YANG Ju-lun2,***()
1 School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
2 Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming 650032, China
3 School of Life Sciences, Kunming University of Science and Technology, Kunming 650032, China
 全文: PDF(2409 KB)   HTML
摘要:

单链抗体(single-chain fragment variable,scFv)是由可变重链(VH)和可变轻链(VL)通过柔性肽接头连接在一起的小分子重组抗体。从杂交瘤中分离单链抗体的mRNA,逆转录成cDNA作为单链抗体基因扩增的模板,可得到包含大量不同VH和VL片段的单链抗体的基因文库。利用展示技术完成单链抗体亲和力和特异性筛选及鉴定,得到的单链抗体可通过各种表达系统成功表达单链抗体的蛋白质。虽然单链抗体分子量小,但已包含了完整抗体的抗原结合域,对抗原具有高特异性、高亲和力及低免疫原性,还具有较好的肿瘤组织穿透和扩散能力。因此,单链抗体已成为肿瘤诊疗方法开发中的研究热点。详细介绍了单链抗体的制备方法和问题,重点阐述了单链抗体在肿瘤诊断和治疗中的研究进展,以期为单链抗体制备及其治疗和诊断肿瘤提供理论依据。

关键词: 单链抗体重组抗体肿瘤诊断肿瘤治疗    
Abstract:

Single-chain fragment variable (scFv) is a small molecule recombinant antibody consisting of a variable heavy chain (VH) and a variable light chain (VL) linked together by a flexible peptide junction. The mRNA of single chain antibodies is isolated mainly from hybridomas and reverse transcribed into cDNA as a template for scFv gene amplification, resulting in a gene library containing a large number of different VH and VL fragments of scFv. Screening and identification of the affinity and specificity of the scFv is accomplished using different display techniques, and the resulting scFv can be used to successfully express its proteins through various expression systems. Despite its small molecular weight, scFv contains the antigen-binding domain of intact antibodies and has high specificity and affinity for antigens, as well as low immunogenicity, and also has a strong ability to penetrate and spread through tumor tissue. Therefore, scFv has become a hot research topic in the development of oncology therapeutic approaches. This review details the methods and problems in the preparation of scFv and focuses on the research progress of scFv in tumor diagnosis and treatment, with a view to providing a theoretical basis for the preparation of scFv and its application in diagnosis and treatment of tumors.

Key words: Single-chain fragment variable (scFv)    Recombinant antibody    Tumor diagnosis    Tumor therapy
收稿日期: 2023-01-18 出版日期: 2023-07-04
ZTFLH:  Q819  
基金资助: * 云南省科技计划重大科技项目(2018ZF009)
通讯作者: ***电子信箱:yangjulun@sina.com   
作者简介: **具有同等贡献
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林鹏
钱菁
冯强
雷琎
江亚
杨举伦

引用本文:

林鹏, 钱菁, 冯强, 雷琎, 江亚, 杨举伦. 单链抗体的制备及其在肿瘤诊疗中的应用*[J]. 中国生物工程杂志, 2023, 43(6): 76-86.

LIN Peng, QIAN Jing, FENG Qiang, LEI Jing, JIANG Ya, YANG Ju-lun. Production of Single-chain Fragment Variable and Its Application in Tumor Diagnosis and Treatment. China Biotechnology, 2023, 43(6): 76-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2301026        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/76

图1  IgG抗体分子及其不同片段和单链抗体
图2  噬菌体展示技术筛选scFv的过程
图3  单链抗体在肿瘤诊断和治疗中的功能
类别 单链抗体的靶点 肿瘤类型
诊断型 EpCAM 腺癌、鳞状细胞癌、结肠直肠癌
EGFR 非小细胞肺癌
TF 胃癌、胰腺癌、脑癌
MTC 甲状腺髓样癌
ATC 间变性甲状腺癌
PSMA 前列腺癌
RAGE 胰腺癌
hERG1 各种肿瘤
MSLN 各种肿瘤
VCAM-1 各种肿瘤
铁传递蛋白受体 肺癌
CEA 腺癌
抗胸腺细胞分化抗原 抗胸腺细胞分化抗原
GCA 肝细胞癌
治疗型 间皮素 宫颈癌
PSMA 前列腺癌
AFP 肝细胞癌
CA125 乳腺癌
STEAP-1 前列腺癌
CD176 胃癌、结直肠癌
MG7-scFv/SEB 胃癌
fAChR-scFv/ETA 横纹肌肉瘤
CD22 淋巴瘤
CCKR2 胃腺癌
EGFR III 神经胶质细胞瘤
CD123 白血病
Fzd7 乳腺癌
TfR1 鳞状细胞癌、造血系统肿瘤
p21Ras 结直肠癌、肺癌、乳腺癌
Cyclin D1 肝细胞癌
Cyclin E 乳腺癌
表1  用于肿瘤诊断和治疗的单链抗体
图4  CAR-T(a)和BiTE(b)组成的简易示意图
[1] Chiu M L, Goulet D R, Teplyakov A, et al. Antibody structure and function: the basis for engineering therapeutics. Antibodies, 2019, 8(4): 55.
doi: 10.3390/antib8040055
[2] Altshuler E P, Serebryanaya D V, Katrukha A G. Generation of recombinant antibodies and means for increasing their affinity. Biochemistry (Moscow), 2010, 75(13): 1584-1605.
doi: 10.1134/S0006297910130067
[3] Lyu X C, Zhao Q C, Hui J L, et al. The global landscape of approved antibody therapies. Antibody Therapeutics, 2022, 5(4): 233-257.
doi: 10.1093/abt/tbac021 pmid: 36213257
[4] Ahmad Z A, Yeap S K, Ali A M, et al. scFv antibody: principles and clinical application. Clinical & Developmental Immunology, 2012, 2012: 980250.
[5] Alfthan K, Takkinen K, Sizmann D, et al. Properties of a single-chain antibody containing different linker peptides. Protein Engineering, Design and Selection, 1995, 8(7): 725-731.
doi: 10.1093/protein/8.7.725
[6] Wilson I A, Stanfield R L. Antibody-antigen interactions: new structures and new conformational changes. Current Opinion in Structural Biology, 1994, 4(6): 857-867.
pmid: 7536111
[7] Hussack G, MacKenzie C R, Tanha J. Characterization of single-domain antibodies with an engineered disulfide bond. Single domain antibodies, Totowa, NJ: Humana Press, 2012: 417-429.
[8] Roberts C J. Therapeutic protein aggregation: mechanisms, design, and control. Trends in Biotechnology, 2014, 32(7): 372-380.
doi: 10.1016/j.tibtech.2014.05.005 pmid: 24908382
[9] Galeffi P, Lombardi A, Pietraforte I, et al. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems. Journal of Translational Medicine, 2006, 4(1): 1-13.
doi: 10.1186/1479-5876-4-1
[10] Finlay W J J, Shaw I, Reilly J P, et al. Generation of high-affinity chicken single-chain fv antibody fragments for measurement of the Pseudonitzschia pungens Toxin domoic acid. Applied and Environmental Microbiology, 2006, 72(5): 3343-3349.
doi: 10.1128/AEM.72.5.3343-3349.2006
[11] Zhang J L, Gou J J, Zhang Z Y, et al. Screening and evaluation of human single-chain fragment variable antibody against hepatitis B virus surface antigen. Hepatobiliary Pancreat Dis Int, 2006, 5: 237-241.
[12] Zhang X T, Dong S, Huang Y Y, et al. A scFv phage targeting the C. albicans cell wall screened from a bacteriophage-based library of induced immune protection in mice. Infection, Genetics and Evolution, 2022, 102: 105303.
doi: 10.1016/j.meegid.2022.105303
[13] Li L, Wu S M si Y, et al. Single-chain fragment variable produced by phage display technology: construction, selection, mutation, expression, and recent applications in food safety. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 4354-4377.
doi: 10.1111/1541-4337.13018 pmid: 35904244
[14] Ahangarzadeh S, Bandehpour M, Kazemi B. Selection of single-chain variable fragments specific for Mycobacterium tuberculosis ESAT-6 antigen using ribosome display. Iran J Basic Med Sci, 2017, 20: 327-333.
doi: 10.22038/ijbms.2017.8363 pmid: 28392906
[15] Ban B, Blake R C II, Blake D A. Yeast surface display platform for rapid selection of an antibody library via sequential counter antigen flow cytometry. Antibodies, 2022, 11(4): 61.
doi: 10.3390/antib11040061
[16] Sandomenico A, Sivaccumar J P, Ruvo M. Evolution of Escherichia coli expression system in producing antibody recombinant fragments. International Journal of Molecular Sciences, 2020, 21(17): 6324.
doi: 10.3390/ijms21176324
[17] Yaghoobizadeh F, Ardakani M R, Ranjbar M M, et al. Expression, purification, and study on the efficiency of a new potent recombinant scFv antibody against the SARS-CoV-2 spike RBD in E. coli BL21. Protein Expression and Purification, 2023, 203: 106210.
doi: 10.1016/j.pep.2022.106210
[18] Dolgikh V V, Senderskiy I V, Timofeev S A, et al. Construction of scFv antibodies against the outer loops of the Microsporidium Nosema bombycis ATP/ADP-transporters and selection of the fragment efficiently inhibiting parasite growth. International Journal of Molecular Sciences, 2022, 23(23): 15307.
doi: 10.3390/ijms232315307
[19] Kee O H, Nguyen Ngan T B, Bi J W, et al. Vector design for enhancing expression level and assembly of knob-into-hole based FabscFv-Fc bispecific antibodies in CHO cells. Antibody Therapeutics, 2022, 5(4): 288-300.
doi: 10.1093/abt/tbac025 pmid: 36518226
[20] Satheeshkumar P K. Expression of single chain variable fragment (scFv) molecules in plants: a comprehensive update. Molecular Biotechnology, 2020, 62(3): 151-167.
doi: 10.1007/s12033-020-00241-3 pmid: 32036549
[21] Lo K M, Leger O, Hock B. Antibody engineering. Microbiology Spectrum, 2014, 2(1). DOI: 10.1128/microbiolspec.AID-0007-12.
doi: 10.1128/microbiolspec.AID-0007-12
[22] Lu Q, Hou Y Y, Liu X X, et al. Construction, expression and functional analysis of anti-clenbuterol codon-optimized scFv recombinant antibody. Food and Chemical Toxicology, 2020, 135: 110973.
doi: 10.1016/j.fct.2019.110973 pmid: 31738983
[23] Li L, Hou R, Shen W, et al. Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism. Food Chemistry, 2021, 363: 129465.
doi: 10.1016/j.foodchem.2021.129465
[24] Godino A, Amaranto M, Manassero A, et al. His-tagged lactate oxidase production for industrial applications using fed-batch fermentation. Journal of Biotechnology, 2023, 363: 1-7.
doi: 10.1016/j.jbiotec.2022.12.011 pmid: 36608873
[25] Koo C W, Hershewe J M, Jewett M C, et al. Cell-free protein synthesis of particulate methane monooxygenase into nanodiscs. ACS Synthetic Biology, 2022, 11(12): 4009-4017.
doi: 10.1021/acssynbio.2c00366 pmid: 36417751
[26] 刘丽琴, 陈婷婷, 李少伟, 等. 大肠杆菌表达系统在基因工程疫苗研发中的应用与策略优化. 中国新药杂志, 2020, 29(21):2434-2442.
Liu L Q, Chen T T, Li S W, et al. Escherichia coli expression system applied in the development of recombinant human vaccines and its potential improvement. Chinese Journal of New Drugs, 2020, 29(21):2434-2442.
[27] Salavatifar M, Amin S D, Jahromi Z M, et al. Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells. Hybridoma, 2011, 30(3): 229-238.
doi: 10.1089/hyb.2011.0009 pmid: 21707357
[28] van der Steen S C H A, van Tilborg A A G, Vallen M J E, et al. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11. Gynecologic Oncology, 2016, 140(3): 527-536.
doi: 10.1016/j.ygyno.2015.12.024 pmid: 26731725
[29] Eyvazi S, Kazemi B, Bandehpour M, et al. Identification of a novel single chain fragment variable antibody targeting CD24-expressing cancer cells. Immunology Letters, 2017, 190: 240-246.
doi: S0165-2478(17)30200-6 pmid: 28866120
[30] Verachi F, Percario Z, Di Bonito P, et al. Purification and characterization of antibodies in single-chain format against the E6 oncoprotein of human papillomavirus type 16. BioMed Research International, 2018, 2018: 1-9.
[31] Jalilzadeh-Razin S, Mantegi M, Tohidkia M R, et al. Phage antibody library screening for the selection of novel high-affinity human single-chain variable fragment against gastrin receptor: an in silico and in vitro study. DARU Journal of Pharmaceutical Sciences, 2019, 27(1): 21-34.
doi: 10.1007/s40199-018-0233-1
[32] Fogaça R L, Alvarenga L M, Woiski T D, et al. Biomolecular engineering of antidehydroepiandrosterone antibodies: a new perspective in cancer diagnosis and treatment using single-chain antibody variable fragment. Nanomedicine, 2019, 14(6): 689-705.
doi: 10.2217/nnm-2018-0230
[33] Banisadr A, Safdari Y, Kianmehr A, et al. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells. Human Vaccines & Immunotherapeutics, 2018, 14(4): 856-863.
[34] Mahgoub E, Bolad A. Construction, expression and characterisation of a single chain variable fragment in the Escherichia coli periplasmic that recognise MCF-7 breast cancer cell line. Journal of Cancer Research and Therapeutics, 2014, 10(2): 265.
doi: 10.4103/0973-1482.136551 pmid: 25022376
[35] Gur D, Liu S L, Shukla A, et al. Identification of single chain antibodies to breast cancer stem cells using phage display. Biotechnology Progress, 2009, 25(6): 1780-1787.
doi: 10.1002/btpr.285 pmid: 19899107
[36] Khantasup K, Saiviroonporn P, Jarussophon S, et al. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer. Magnetic Resonance Materials in Physics, Biology and Medicine, 2018, 31(5): 633-644.
doi: 10.1007/s10334-018-0687-7
[37] Abe K, Shoji M, Chen J, et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(15): 8663-8668.
[38] Liu Q, Pang H, Hu X L, et al. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice. Oncology Reports, 2016, 35(1): 171-178.
doi: 10.3892/or.2015.4345 pmid: 26498224
[39] Yakushiji H, Kobayashi K, Takenaka F, et al. Novel single-chain variant of antibody against mesothelin established by phage library. Cancer Science, 2019, 110(9): 2722-2733.
doi: 10.1111/cas.14150 pmid: 31461572
[40] Zhang X, Liu C B, Hu F, et al. PET imaging of VCAM-1 expression and monitoring therapy response in tumor with a 68Ga-labeled single chain variable fragment. Molecular Pharmaceutics, 2018, 15(2): 609-618.
doi: 10.1021/acs.molpharmaceut.7b00961 pmid: 29308904
[41] Chowdhury P S, Viner J L, Beers R, et al. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(2): 669-674.
[42] Seyed-Alireza E, Foroogh N, Amirhossein S. Inhibition of intercellular communication between prostate cancer cells by A specific anti-STEAP-1 single chain antibody. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18(12): 1674-1679.
doi: 10.2174/1871520618666171208092115 pmid: 29219059
[43] Ji X N, Shen Y L, Sun H, et al. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG 2 cells as a single agent or in combination with paclitaxel. Tumor Biology, 2016, 37(8): 10085-10096.
doi: 10.1007/s13277-016-4803-x
[44] Liu J N, Yi B, Zhang Z, et al. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes. Frontiers of Medicine, 2016, 10(2): 204-211.
doi: 10.1007/s11684-016-0443-1 pmid: 27090911
[45] Veisi K, Farajnia S, Zarghami N, et al. Development and evaluation of a cetuximab-based humanized single chain antibody against EGFR-overexpressing tumors. Drug Research, 2014, 65(12): 624-628.
doi: 10.1055/s-00023610
[46] Nickho H, Younesi V, Aghebati-Maleki L, et al. Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengineered, 2017, 8(5): 501-510.
doi: 10.1080/21655979.2016.1255383 pmid: 27849134
[47] Crépin R, Goenaga A L, Jullienne B, et al. Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas. Cancer Research, 2010, 70(13): 5497-5506.
doi: 10.1158/0008-5472.CAN-10-0938 pmid: 20530676
[48] Wu Y, Tang W W, Cao Y H, et al. A cyclin D1-specific single-chain variable fragment antibody that inhibits HepG 2 cell growth and proliferation. Biotechnology Journal, 2020, 15(8): 1900430.
doi: 10.1002/biot.v15.8
[49] Yang J L, Liu D X, Zhen S J, et al. A novel anti-p21Ras scFv antibody reacting specifically with human tumour cell lines and primary tumour tissues. BMC Cancer, 2016, 16(1): 1-9.
doi: 10.1186/s12885-015-2026-y
[50] Wang P, Pan X Y, Feng Q, et al. The immunoreactivity of the anti-p21Ras single-chain fragment variant KGH-R1 and its predicted binding sites to p21Ras. Immunotherapy, 2020, 12(12): 879-890.
doi: 10.2217/imt-2019-0222 pmid: 32664770
[51] Huang C C, Liu F R, Feng Q, et al. RGD4C peptide mediates anti-p21Ras scFv entry into tumor cells and produces an inhibitory effect on the human colon cancer cell line SW480. BMC Cancer, 2021, 21(1): 1-14.
doi: 10.1186/s12885-020-07763-8
[52] Tong Q, Liu K, Lu X M, et al. Construction and characterization of a novel fusion protein MG7-scFv/SEB against gastric cancer. Journal of Biomedicine & Biotechnology, 2010, 2010: 121094.
[53] Gattenlöhner S, Jöriβen H, Huhn M, et al. A human recombinant autoantibody-based immunotoxin specific for the fetal acetylcholine receptor inhibits rhabdomyosarcoma growth in vitro and in a murine transplantation model. Journal of Biomedicine and Biotechnology, 2010, 2010: 1-11.
[54] Mikiewicz D, Łukasiewicz N, Zieliński M, et al. Bacterial expression and characterization of an anti-CD 22 single-chain antibody fragment. Protein Expression and Purification, 2020, 170: 105594.
doi: 10.1016/j.pep.2020.105594
[55] Patil S S, Railkar R, Swain M, et al. Novel anti IGFBP 2 single chain variable fragment inhibits glioma cell migration and invasion. Journal of Neuro-Oncology, 2015, 123(2): 225-235.
doi: 10.1007/s11060-015-1800-7
[56] Mohammadi M, Nejatollahi F, Ghasemi Y, et al. Anti-metastatic and anti-invasion effects of a specific anti-MUC 18 scFv antibody on breast cancer cells. Applied Biochemistry and Biotechnology, 2017, 181(1): 379-390.
doi: 10.1007/s12010-016-2218-1 pmid: 27565656
[57] Gao R J, Li L, Shang B Y, et al. A gelatinases-targeting scFv-based fusion protein shows enhanced antitumour activity with endostar against hepatoma. Basic & Clinical Pharmacology & Toxicology, 2015, 117(2): 105-116.
[58] Duan Y T, Chen R Q, Huang Y J, et al. Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cellular and Molecular Life Sciences, 2022, 79(1): 14.
doi: 10.1007/s00018-021-04089-x
[59] Kim D W, Cho J Y. Recent advances in allogeneic CAR-T cells. Biomolecules, 2020, 10(2): 263.
doi: 10.3390/biom10020263
[60] Vishwasrao P, Li G B, Boucher J C, et al. Emerging CAR T cell strategies for the treatment of AML. Cancers, 2022, 14(5): 1241.
doi: 10.3390/cancers14051241
[61] Zhou S J, Liu M G, Ren F, et al. The landscape of bispecific T cell engager in cancer treatment. Biomarker Research, 2021, 9(1): 1-23.
doi: 10.1186/s40364-020-00251-y
[62] Wathikthinnakon M, Luangwattananun P, Sawasdee N, et al. Combination gemcitabine and PD-L1xCD 3 bispecific T cell engager (BiTE) enhances T lymphocyte cytotoxicity against cholangiocarcinoma cells. Scientific Reports, 2022, 12: 6154.
doi: 10.1038/s41598-022-09964-6 pmid: 35418130
[63] Demarest Stephen J, Glaser Scott M. Antibody therapeutics, antibody engineering, and the merits of protein stability. Current Opinion in Drug Discovery & Development, 2008, 11(5): 675-87.
[64] Bates A, Power C A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies, 2019, 8(2): 28.
doi: 10.3390/antib8020028
[65] Turki I, Hammami A, Kharmachi H, et al. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency. Molecular Immunology, 2014, 57(2): 66-73.
doi: 10.1016/j.molimm.2013.08.009 pmid: 24091293
[66] Zuber C, Mitteregger G, Schuhmann N, et al. Delivery of single-chain antibodies (scFvs) directed against the 37/ 67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. Journal of General Virology, 2008, 89(8): 2055-2061.
doi: 10.1099/vir.0.83670-0
[1] 董蒨蒨, 李玉淼. CAR-T在血液类恶性肿瘤中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 43-53.
[2] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[3] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[4] 王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[7] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[8] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[9] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[10] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[11] 赵荣,陈含宇,黄春,章晓联,潘勤. 靶向B细胞并特异结合其分泌IL-10的重组融合蛋白的构建、表达和初步鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 1-6.
[12] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[13] 王冬冬, 张国利, 岳玉环, 吴广谋, 田园, 刘雨玲, 吉元刚, 王金鹏, 李建, 潘荣荣, 马洪圆. 抗A型产气荚膜梭菌α毒素全人源双价单链抗体的构建、表达及其活性的初步研究[J]. 中国生物工程杂志, 2017, 37(4): 18-25.
[14] 温杰, 宋琳琳, 张莹, 王荷, 何金生, 洪涛. 稳定表达Aβ特异性单链抗体的哺乳动物细胞株构建和功能研究[J]. 中国生物工程杂志, 2017, 37(2): 1-7.
[15] 陈华新, 武静, 赵瑾, 姜鹏. 抗人AFP单链抗体与藻胆蛋白融合蛋白的构建、表达与活性分析[J]. 中国生物工程杂志, 2016, 36(5): 74-80.