Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 51-59    DOI: 10.13523/j.cb.2206050
综述     
mRNA疫苗在疾病预防与治疗中的研究进展与展望
王彧,白岳丘,田易晓,王新月,黄庆生*()
西北工业大学生命学院 西安 710072
Advances and Prospects of mRNA Vaccines Used in the Prevention and Therapies of Diseases
Yu WANG,Yue-qiu BAI,Yi-xiao TIAN,Xin-yue WANG,Qing-sheng HUANG*()
Northwestern Polytechnical University, School of Life Sciences, Xi’an 710072, China
 全文: PDF(1183 KB)   HTML
摘要:

基于信使RNA(messenger RNA, mRNA)的核酸疫苗是近年来兴起的一种mRNA技术。mRNA疫苗比传统疫苗有许多优点,能够实现快速、经济、高效的生产。单个mRNA疫苗可以编码多种抗原,增强对特定病原体的免疫反应,提高疾病的治疗效率,以单一配方针对多种病原微生物或疾病。mRNA疫苗相关技术在新型冠状病毒肺炎疫情防控中被视作一种革命性的疫苗技术,以创纪录的速度完成研发并成功应用。由于mRNA自身稳定性差,新型递送系统的开发与应用至关重要。随着mRNA相关药理学的深入研究,mRNA疫苗的临床应用进入了一个崭新的阶段。近年来。mRNA疫苗在传染性疾病预防、肿瘤治疗等方面获得充分发展并取得了一定的研究成果,对其进行概述并进行一定程度的展望。

关键词: mRNA疫苗递送系统传染性疾病肿瘤治疗    
Abstract:

Nucleic acid vaccine based on messenger RNA (mRNA) is a kind of mRNA technology emerging in recent years. mRNA vaccines have many advantages over traditional vaccines, which can be manufactured in a cell-free manner, enabling rapid, economical and efficient production. In addition, single mRNA vaccines can encode multiple antigens, enhance the immune response against certain pathogens, improve the efficiency of treatment process of diseases, and can target multiple microbial or viral variants in a single formulation. mRNA is seen as a revolutionary vaccine technology in COVID-19 prevention and control, which has been developed and successfully applied in record time. The mRNA vaccine is with poor stability, so the development and applications of novel delivery systems are essential. With the intensive study of pharmacology of mRNA vaccines, the clinical applications of mRNA vaccines enter into a new stage. Recently, mRNA technologies were used in the prevention and therapies of diseases, and some results were published. Here, the output of mRNA vaccines used in prevention and therapies of diseases was summarized, and the development of mRNA vaccines was also discussed.

Key words: mRNA vaccines    Delivery system    Infectious disease    Tumor treatment
收稿日期: 2022-06-26 出版日期: 2022-11-04
ZTFLH:  Q522+.2  
通讯作者: 黄庆生     E-mail: huangqingsheng@nwpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王彧
白岳丘
田易晓
王新月
黄庆生

引用本文:

王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.

Yu WANG,Yue-qiu BAI,Yi-xiao TIAN,Xin-yue WANG,Qing-sheng HUANG. Advances and Prospects of mRNA Vaccines Used in the Prevention and Therapies of Diseases. China Biotechnology, 2022, 42(10): 51-59.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2206050        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/51

图1  mRNA疫苗设计原理
注册号 临床试验 测试疫苗 试验阶段
NCT04813796 mRNA-1283与mRNA-1273疫苗在18~55岁健康人群中预防COVID-19的安全性、反应原性和免疫原性研究 mRNA-1283; mRNA-1273 Ⅰ期
NCT05375838 mRNA-1073 (COVID-19/流感)疫苗在18~75岁成年人中的安全性、反应原性和免疫原性研究 mRNA-1073; mRNA-1010;
mRNA-1273
Ⅰ期
NCT05366296 关于一种冻干COVID-19 mRNA疫苗的安全性、反应原性和免疫原性研究 A lyophilized COVID-19
mRNA vaccine
Ⅰ期
NCT05354063 SYS6006在中国健康老年群体中的研究 SYS6006 Ⅰ期
NCT05354089 SYS6006在18~59岁健康人群中的研究 SYS6006 Ⅰ期
NCT05364047 一种SARS-CoV-2 mRNA疫苗在中国的临床试验研究 LVRNA009 Ⅰ期
NCT05260437 CV2CoV mRNA疫苗在SARS-CoV-2血清阳性成人志愿者中的安全性、反应原性和免疫原性研究 CV2CoV Ⅰ期
NCT04449276 CVnCoV疫苗在健康成人中的安全性、反应原性和免疫原性评价研究 CVnCoV Ⅰ期
NCT05397223 一种改良mRNA疫苗在健康成人中的研究 mRNA-1273; mRNA-1010; mRNA-1345; FLUAD®; mRNA-1647 Ⅰ期
NCT05226390 一种新型MVA-SARS-2-ST候选疫苗的安全性、反应原性和免疫原性研究 MVA-SARS-2-ST Ⅰ期
NCT04844268 一项评估RNA MCTI CIMATEC HDT(HDT-301)疫苗安全性、反应原性和免疫原性的研究 Cohort 1 VACCINE RNA MCTI CIMATEC HDT (HDT-301) vaccine; Cohort 2 RNA VACCINE MCTI CIMATEC HDT(HDT-301) vaccine; Cohort 3 VACCINE RNA MCTI CIMATEC HDT(HDT-301) vaccine Ⅰ期
NCT05367843 关于一种COVID-19候选疫苗PRIME-2-CoV_Beta的安全性、耐受性和免疫原性研究 PRIME-2-CoV_Beta Ⅰ期
NCT04776317 关于黑猩猩腺病毒和自我扩增mRNA Prime-Boost疫苗在健康成年人中的研究 ChAdV68-S; ChAdV68-S-TCE; SAM-LNP-S; SAM-LNP-S-TCE Ⅰ期
NCT05394012 关于一种SARS-CoV-2 mRNA嵌合体疫苗的安全性和免疫原性的1a临床试验研究 RQ3013 Ⅰ期
NCT05396573 关于一种SARS-CoV-2 mRNA嵌合体疫苗的安全性和免疫原性的1b临床试验研究
NCT04765436 PTX-COVID19-B疫苗在18~64岁血清阴性健康成人中的安全性、耐受性和免疫原性研究 PTX-COVID19-B Ⅰ期
NCT05148962 GRT-R910 COVID-19增强疫苗在健康志愿者中的研究 GRT-R910 Ⅰ期
NCT04934111 LNP-nCOV saRNA-02疫苗的安全性和免疫原性研究 LNP-nCOV saRNA-02 Vaccine Ⅰ期
NCT05094609 通过气溶胶递送的ChAd68和Ad5腺病毒疫苗的Ⅰ期试验研究 Ad5-triCoV/Mac; ChAd-triCoV/Mac Ⅰ期
NCT04773665 关于COVID-19候选疫苗VBI-2902a和VBI-2905a的安全性、耐受性和免疫原性研究 VBI-2902a; VBI-2905a Ⅰ期
NCT05233826 作为强化剂的COVI-VAC疫苗在接种过COVID-19疫苗的成年人中的安全性和免疫原性研究 COVI-VAC Ⅰ期
注册号 临床试验 测试疫苗 试验阶段
NCT05433194 针对SARS-CoV-2变种Omicron的mRNA疫苗安全性、耐受性和免疫原性的研究 ABO1009-DP Ⅰ期
NCT05434585 针对SARS-CoV-2变种的mRNA疫苗的安全性、耐受性和免疫原性的研究 ABO1009-DP; ABO-CoV.617.2 Ⅰ期
NCT05037097 三种RNA疫苗在健康成人中的安全性和免疫原性研究 ARCT-021; ARCT-154; ARCT-165 Ⅰ/Ⅱ期
NCT05280158 高剂量mRNA-1273疫苗在肺移植受者中的开放标签的递增剂量研究 mRNA-1273 Ⅰ/Ⅱ期
NCT04863131 EXG-5003的安全性和免疫原性研究 EXG-5003 Ⅰ/Ⅱ期
NCT04798027 不同配方的mRNA疫苗VAW00001在18岁及以上健康成人中的研究 SARS-CoV-2 mRNA vaccine
formulation 1/2/3
Ⅰ/Ⅱ期
NCT05132855 第三剂异源mRNA/蛋白质疫苗在人体中的免疫应答研究 BNT162b2; mRNA-1273;
MVC-COV1901
Ⅰ/Ⅱ期
NCT05188469 关于EG-COVID疫苗在健康成人志愿者中的安全性、耐受性和免疫原性研究 EG-COVID-001/003 Ⅰ/Ⅱ期
NCT05352867 一种SARS-CoV-2 mRNA疫苗在中国人中的临床试验研究 LVRNA009 Ⅰ/Ⅱ期
NCT04977479 向首次注射mRNA疫苗后发生全身过敏反应的个体中注射第二剂疫苗的安全性研究 Pfizer-BioNTech COVID-19 vaccine Ⅱ期
NCT04515147 CVnCoV疫苗在健康成人中的安全性、反应原性和免疫原性的剂量确认研究 CVnCoV; Hepatitis A vaccine; Pneumococcal vaccine Ⅱ期
NCT04927065 针对SARS-CoV-2(COVID-19)变种的mRNA疫苗增强剂的免疫原性与安全性的研究 mRNA-1273.211; mRNA-1273; mRNA-1273.617.2; mRNA-1273.213; mRNA-1273.529; mRNA-1273.214 Ⅱ期
NCT04824638 关于向COVID-19阴性的成年志愿者接种两剂BNT162b2疫苗以及阳性的成年志愿者接种单剂BNT162b2疫苗的研究 BNT162b2 Ⅱ期
NCT04969276 关于向已经接种过2剂COVID-19 mRNA疫苗的65岁及以上老人同时或单独接种四价流感疫苗和COVID-19 mRNA疫苗的研究 COVID-19 mRNA Vaccine
(nucleoside modified); Quadrivalent inactivated influenza high dose
Ⅱ期
NCT05175742 关于PTX-COVID19-B疫苗的安全性、耐受性和免疫原性研究 PTX-COVID19-B; Pfizer-BioNTech
COVID-19 vaccine
Ⅱ期
NCT04885764 关于接种艾因·夏姆斯大学(ASU-VAC)疫苗后抗体状态和疫苗有效性研究 Astrazeneca/Oxford vaccine;
Sinopharm vaccine
Ⅱ期
NCT04816643 一种COVID-19 RNA候选疫苗在健康儿童和年轻人中的安全性、耐受性和免疫原性的I/II/III期研究 BNT162b2 Ⅰ/Ⅱ
/Ⅲ期
NCT05168813 一项关于mRNA疫苗针对SARS-CoV-2变异株的有效性研究 mRNA-1273 Ⅱ/Ⅲ期
NCT05022329 关于慢性肾脏疾病(CKD)患者使用疫苗增强剂的研究 Pfizer-BioNTech COVID-19 vaccine; MODERNA SARS-CoV-2 vaccine Ⅱ/Ⅲ期
NCT05249829 关于Omicron变种疫苗与COVID-19 mRNA-1273加强针的免疫原性和安全性评价的比较研究 mRNA-1273; mRNA-1273.214; mRNA-1273.529 Ⅱ/Ⅲ期
NCT05405283 关于比较接种第二剂辉瑞/BioNTech或赛诺菲/GSK疫苗后的免疫反应的随机、单盲与多中心研究 2nd booster with Comirnaty® (Pfizer-BioNTech); CoV2 preS dTM adjuvanted vaccine (B.1.351), Sanofi/GSK Ⅲ期
NCT04652102 CVnCoV疫苗在成年人中的安全性和有效性研究 CVnCoV Ⅲ期
注册号 临床试验 测试疫苗 试验阶段
NCT04848467 在60岁及以上老人中与流感疫苗同时接种CVnCoV时的免疫反应、安全性和接种后反应程度研究 SARS-CoV-2 mRNA Vaccine
(CVnCoV); Quadrivalent influenza vaccine (QIV)
Ⅲ期
NCT05212610 出现不良反应后mRNA疫苗接种的安全性研究 Pfizer-BioNTech mRNA COVID-19 vaccine; Moderna mRNA COVID-19 vaccine Ⅳ期
NCT05057182 关于第三剂mRNA疫苗提高COVID-19免疫力的研究 BNT162b2 Ⅳ期
NCT05231005 关于第四剂BNT162b2 COVID-19疫苗接种研究
NCT04969250 关于COVID-19康复患者接种疫苗的研究 Moderna mRNA-1273 COVID-19 vaccine; Pfizer BNT162b2 COVID-19 vaccine Ⅳ期
表1  国内外注册的mRNA疫苗治疗COVID-19代表性临床试验
注册号 临床试验 测试疫苗 试验阶段 应用范围
NCT05264974 一种新型RNA纳米颗粒疫苗辅助抗PD -1抗体以治疗早期黑色素瘤复发患者 Autologous total tumor mRNA loaded DOTAP liposome vaccine Ⅰ期 黑色素瘤
NCT04163094 脂质体mRNA疫苗辅助化疗以治疗卵巢癌患者 W_ova1 Vaccine Ⅰ期 卵巢癌
NCT05202561 RNA肿瘤疫苗在晚期实体瘤患者中的研究 RNA tumor vaccine target of KRAS mutation Ⅰ期 晚期实体瘤
NCT05198752 关于个性化新抗原mRNA治疗晚期实体瘤患者的研究 SW1115C3 Ⅰ期 晚期实体瘤
NCT03313778 mRNA-4157在可切除实体瘤患者中的安全性、耐受性和免疫原性研究以及与Pembrolizumab联合治疗不可切除实体瘤患者的安全性研究 mRNA-4157 Ⅰ期 实体瘤
NCT04573140 用于治疗新诊断的儿童高级别胶质瘤(pHGG)和成人胶质母细胞瘤(GBM)的RNA-脂质(RNA-LP)疫苗研究 Autologous total tumor mRNA and pp65 full length lysosomal associated membrane protein mRNA loaded DOTAP liposome vaccine Ⅰ期 成胶质细胞瘤
NCT00204516 以不同方式接种肿瘤mRNA疫苗在转移型黑色素瘤患者中的研究 mRNA vaccines coding for melanoma associated antigens Ⅰ/Ⅱ期 黑色素瘤
NCT00831467 RNActive衍生型前列腺癌疫苗以治疗激素抵抗型疾病安全性和有效性的试验研究 CV9103 Ⅰ/Ⅱ期 激素抵抗型
前列腺癌
NCT00923312 RNActive衍生癌症疫苗在IIIB或IV期非小细胞肺癌(NSCLC)患者中的试验研究 CV9201 Ⅰ/Ⅱ期 非小细胞肺癌
NCT03164772 Phase 1/2 Study of Combination Immunotherapy and mRNA Vaccine in Subjects With NSCLC联合免疫治疗与mRNA疫苗以治疗非小细胞肺癌患者的Ⅰ/Ⅱ期临床试验研究 BI 1361849 (CV9202) Ⅰ/Ⅱ期 转移性非小细胞肺癌
NCT03480152 针对新抗原的个性化mRNA疫苗研究 National Cancer Institute (NCI)-4650 Ⅰ/Ⅱ期 黑色素瘤; 结肠癌; 胃肠癌; 泌尿系统肿瘤; 肝癌
NCT03418480 HPV Anti-CD40 RNA Vaccine (HARE-40) BNT113 Ⅰ/Ⅱ期 HPV 诱发的鳞状细胞癌
NCT04534205 BNT113疫苗联合Pembrolizumab或单独Pembrolizumab治疗人乳头瘤病毒16阳性并表达PD-L1蛋白的头颈部肿瘤患者的安全性、耐受性和有效性的比较研究 Ⅱ期 头颈部肿瘤
NCT03897881 个性化癌症疫苗mRNA-4157联合Pembrolizumab以治疗高危黑色素瘤患者的有效性研究 mRNA-4157 Ⅱ期 黑色素瘤
NCT05456165 靶向新抗原的个体化疫苗联合免疫检查点抑制剂以治疗结肠癌患者 GRT-C901; GRT-R902 Ⅱ期 结肠癌;(结)直肠癌
NCT02140138 RNActive癌症疫苗在前列腺癌患者中的开放标签的随机试验研究 CV9104 Ⅱ期 前列腺癌
NCT04526899 BNT111与Cemiplimab联合或单独治疗抗PD -1的复发以及不可切除的III期或IV期黑色素瘤患者的试验研究 BNT111 Ⅱ期 黑色素瘤
NCT00510133 联合GRNVAC1的主动免疫疗法治疗急性髓系白血病(AML)的研究 GRNVAC1 Ⅱ期 急性髓系白血病
表2  国内外注册的mRNA疫苗治疗癌症的代表性临床试验
[1] 陈彦, 孙英. mRNA疫苗研究进展:2021年拉斯克奖临床医学研究奖. 首都医科大学学报, 2021, 42(5): 893-899.
Chen Y, Sun Y. Progress in mRNA vaccine:the 2021 lasker clinical medicine research award. Journal of Capital Medical University, 2021, 42(5): 893-899.
[2] Chaudhary N, Weissman D, Whitehead K A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 2021, 20(11): 817-838.
doi: 10.1038/s41573-021-00283-5 pmid: 34433919
[3] Oh S, Kessler J A. Design, assembly, production, and transfection of synthetic modified mRNA. Methods, 2018, 133: 29-43.
doi: S1046-2023(17)30315-8 pmid: 29080741
[4] Wadhwa A, Aljabbari A, Lokras A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics, 2020, 12(2): 102.
doi: 10.3390/pharmaceutics12020102
[5] Linares-Fernández S, Lacroix C, Exposito J Y, et al. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends in Molecular Medicine, 2020, 26(3): 311-323.
doi: S1471-4914(19)30244-8 pmid: 31699497
[6] Ho W, Gao M Z, Li F Q, et al. Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Advanced Healthcare Materials, 2021, 10(8): 2001812.
[7] Dhaliwal H K, Fan Y F, Kim J, et al. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Molecular Pharmaceutics, 2020, 17(6): 1996-2005.
doi: 10.1021/acs.molpharmaceut.0c00170 pmid: 32365295
[8] Golob J L, Lugogo N, Lauring A S, et al. SARS-CoV-2 vaccines: a triumph of science and collaboration. JCI Insight, 2021, 6(9): e149187.
[9] Blakney A K, Zhu Y Q, McKay P F, et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano, 2020, 14(5): 5711-5727.
doi: 10.1021/acsnano.0c00326 pmid: 32267667
[10] Abramson A, Kirtane A R, Shi Y H, et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter, 2022, 5(3): 975-987.
doi: 10.1016/j.matt.2021.12.022
[11] Rayamajhi S, Wilson S, Aryal S, et al. Biocompatible FePO4 nanoparticles: drug delivery, RNA stabilization, and functional activity. Nanoscale Research Letters, 2021, 16(1): 169.
doi: 10.1186/s11671-021-03626-8 pmid: 34837559
[12] Ebinger J E, Fert-Bober J, Printsev I, et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nature Medicine, 2021, 27(6): 981-984.
doi: 10.1038/s41591-021-01325-6 pmid: 33795870
[13] Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b 2 mRNA COVID-19 vaccine. The New England Journal of Medicine, 2020, 383(27): 2603-2615.
doi: 10.1056/NEJMoa2034577
[14] Baden L R, El Sahly H M, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine, 2021, 384(5): 403-416.
doi: 10.1056/NEJMoa2035389 pmid: 33378609
[15] Freyn A W, Ramos da Silva J, Rosado V C, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Molecular Therapy, 2020, 28(7): 1569-1584.
doi: S1525-0016(20)30199-4 pmid: 32359470
[16] Mu Z K, Haynes B F, Cain D W. HIV mRNA vaccines-progress and future paths. Vaccines, 2021, 9(2): 134.
doi: 10.3390/vaccines9020134
[17] Zhang P, Narayanan E, Liu Q B, et al. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nature Medicine, 2021, 27(12): 2234-2245.
doi: 10.1038/s41591-021-01574-5 pmid: 34887575
[18] Taylor L H, Hampson K, Fahrion A, et al. Difficulties in estimating the human burden of canine rabies. Acta Tropica, 2017, 165: 133-140.
doi: S0001-706X(15)30184-4 pmid: 26721555
[19] Schnee M, Vogel A B, Voss D, et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Neglected Tropical Diseases, 2016, 10(6): e0004746.
[20] Alberer M, Gnad-Vogt U, Hong H S, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet, 2017, 390(10101): 1511-1520.
doi: 10.1016/S0140-6736(17)31665-3
[21] Stokes A, Pion J, Binazon O, et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats. Regulatory Toxicology and Pharmacology, 2020, 113: 104648.
doi: 10.1016/j.yrtph.2020.104648
[22] Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20(1): 41.
doi: 10.1186/s12943-021-01335-5 pmid: 33632261
[23] Pang G B, Liu Y, Wang Y Y, et al. Endotoxin contamination in ovalbumin as viewed from a nano-immunotherapy perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14(1): e1747.
[24] Islam M A, Rice J, Reesor E, et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials, 2021, 266: 120431.
doi: 10.1016/j.biomaterials.2020.120431
[25] Meng C Y, Chen Z, Mai J H, et al. Virus-mimic mRNA vaccine for cancer treatment. Advanced Therapeutics, 2021, 4(11): 2100144.
[26] Tusup M, Läuchli S, Jarzebska N T, et al. mRNA-based anti-TCR CDR3 tumour vaccine for T-cell lymphoma. Pharmaceutics, 2021, 13(7): 1040.
doi: 10.3390/pharmaceutics13071040
[27] Hewitt S L, Bailey D, Zielinski J, et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2020, 26(23): 6284-6298.
doi: 10.1158/1078-0432.CCR-20-0472
[28] Hewitt S L, Bai A L, Bailey D, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Science Translational Medicine, 2019, 11(477): eaat9143.
[29] Huang X, Tang T Y, Zhang G, et al. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Molecular Cancer, 2021, 20(1): 50.
doi: 10.1186/s12943-021-01342-6 pmid: 33685460
[30] van Oosterwijk J G, Wikel S K. Resistance to ticks and the path to anti-tick and transmission blocking vaccines. Vaccines, 2021, 9(7): 725.
doi: 10.3390/vaccines9070725
[31] Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic cleavages in the VEGF family: generating diversity among angiogenic VEGFs, essential for the activation of lymphangiogenic VEGFs. Biology, 2021, 10(2): 167.
doi: 10.3390/biology10020167
[32] Bourhis M, Palle J, Galy-Fauroux I, et al. Direct and indirect modulation of T cells by VEGF-A counteracted by anti-angiogenic treatment. Frontiers in Immunology, 2021, 12: 616837.
[33] Gan L M, Lagerström-Fermér M, Carlsson L G, et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nature Communications, 2019, 10: 871.
doi: 10.1038/s41467-019-08852-4
[34] Rurik J G, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375(6576): 91-96.
doi: 10.1126/science.abm0594 pmid: 34990237
[35] Hargadon K M, Johnson C E, Williams C J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. International Immunopharmacology, 2018, 62: 29-39.
doi: S1567-5769(18)30252-2 pmid: 29990692
[36] Welden J R, Stamm S. Pre-mRNA structures forming circular RNAs. Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2019, 1862(11-12): 194410.
[37] Qu L, Yi Z Y, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 2022, 185(10): 1728-1744.e16.
doi: 10.1016/j.cell.2022.03.044
[1] 金喆彤,芮雪,姜侯喆,王晶晶,陈玉根. mRNA疫苗非病毒载体递送系统研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 58-66.
[2] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[3] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[4] 赵冰,麻淳博,孙冰冰,赵海洋. 智能胰岛素递送系统用于糖尿病治疗的研究进展[J]. 中国生物工程杂志, 2022, 42(5): 81-90.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[7] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[8] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[9] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[10] 胡瞬,易有金,胡涛,李福胜. mRNA疫苗的开发及临床研究进展[J]. 中国生物工程杂志, 2019, 39(11): 105-112.
[11] 景园雅, 陈平, 常建锋, 陈苏. 自噬与癌症[J]. 中国生物工程杂志, 2015, 35(11): 70-76.
[12] 丁笠, 王秀云, 齐海迪, 李海鑫, 周雅琼, 陈耀祖, 张娟, 王旻. 抗血管内皮生长因子受体2双价单链抗体的构建表达及其活性研究[J]. 中国生物工程杂志, 2011, 31(8): 1-6.
[13] 崔巍,沈秉谦,杨胜利. 树突状细胞对海藻酸钙纳米胶囊的吞噬作用与功能诱导[J]. 中国生物工程杂志, 2008, 28(7): 26-31.
[14] 杨珺, 蔡绍皙, 邹全明. IL-24选择性诱导肿瘤细胞凋亡机制[J]. 中国生物工程杂志, 2005, 25(9): 5-9.
[15] 郭蕾, 杨奎, 卢圣栋. EGF受体Ⅲ型突变体在肿瘤治疗中的研究进展[J]. 中国生物工程杂志, 2003, 23(3): 11-14.