Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 10-19    DOI: 10.13523/j.cb.2211025
研究报告     
重组人GSK-3β制备及tau磷酸化活性研究*
刘振武,王荷,闫子迪,张莹(),何金生
北京交通大学生命科学与生物工程研究院 北京 100044
Preparation and Tau Phosphorylation Activity of Recombinant Human GSK-3β
LIU Zhen-wu,WANG He,YAN Zi-di,ZHANG Ying(),HE Jin-sheng
College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(2748 KB)   HTML
摘要:

目的:表达和纯化重组人糖原合成激酶-3β(glycogen synthetic kinase-3β,GSK-3β),优化反应条件,分析GSK-3β对tau蛋白磷酸化修饰产物p-tau的生物活性。方法:构建GSK-3β原核和杆状病毒表达载体,镍亲和层析纯化,BCA法测定蛋白浓度,考马斯亮蓝染色分析纯度;免疫印迹(Western blot)鉴定GSK-3β免疫反应性;液相色谱-质谱联用(liquid chromatography-mass spectrometry,LC-MS)和斑点印迹检测GSK-3β的tau磷酸化情况;优化GSK-3β磷酸化体系中GSK-3β和三磷酸腺苷(adenosine triphosphate,ATP)的浓度;负染透射电镜(transmission electron microscopy,TEM)和硫磺素T(thioflavine-T,ThT)结合实验分析磷酸化产物形成纤维的情况;CCK8实验分析磷酸化产物的细胞毒性。结果:考马斯亮蓝染色显示,原核和杆状病毒表达的重组人GSK-3β蛋白表观分子量位于50 kDa左右,蛋白纯度分别为86%和81%;Western blot在相应位置有特异条带;LC-MS提示,经GSK-3β处理的tau蛋白有23个磷酸化位点;斑点印迹显示,兔抗pT181血清、兔抗pT217和pS404识别磷酸化的tau蛋白;优化反应条件,tau、GSK-3β和ATP的最适反应浓度分别为1 μmol/L、5 μmol/L和3.2 mmol/L;制备的GSK-3β对tau蛋白pT217位点磷酸化信号强于国外商品(P<0.05);TEM显示p-tau 5 d出现纤维结构,而tau未见明显的纤维结构;ThT结合实验检测到磷酸化产物的荧光值增强(P<0.05);磷酸化产物的细胞毒性增强(P<0.05)。结论: 成功制备并鉴定了重组人GSK-3β,可催化tau蛋白在第181、217和404位氨基酸磷酸化,为阿尔茨海默病的基础研究提供了技术支撑。

关键词: 糖原合成激酶-3β体外磷酸化纤维聚集    
Abstract:

Objective: To analyze the catalytic activity of GSK-3β for tau protein phosphorylation in vitro and the effect of phosphorylation modification on tau aggregation and cytotoxicity. Methods: Recombinant human glycogen synthetic kinase-3β (GSK-3β) was expressed and purified by prokaryotic and baculovirus expression systems. GSK-3β expression vectors with C-terminal tag were constructed. The proteins were purified through nickel affinity chromatography, and the protein concentrations were determined by BCA kit. SDS-PAGE Coomassie bright blue staining was used to analyze the purities of proteins. The immunoreactivity of recombinant GSK-3β protein was determined by Western blot. Protein phosphorylation was conducted through GSK-3β and recombinant human tau441 incubation in Tris-HCl solution. The concentrations of enzyme and adenosine triphosphate (ATP) were optimized. The phosphorylation of recombinant human tau441 was detected by liquid chromatograph mass spectrometer (LC-MS) and dot blot. The aggregation of phosphorylation products were determined by negative staining transmission electron microscopy (TEM) and thioflavin T (ThT) binding assay. Results: The data of SDS-PAGE showed that the apparent molecular weight of recombinant human GSK-3β protein expressed by prokaryotic virus and baculovirus was about 50 kDa and the purity of recombinant human GSK-3β protein was 86% and 81%, respectively. Western blot showed signal bands in corresponding positions. LC-MS analysis showed that 23 sites of tau protein were phosphorylated after GSK-3β treatment. Dot blot showed that rabbit anti-pT181 serum, pT217 and pS404 antibodies (with priority recognition of tau181, tau217 and tau404, respectively) recognized tau441 phosphorylated in vitro. The optimal concentrations of tau, GSK-3β and ATP was 1 μmol/L, 5 μmol/L and 3.2 mmol/L, respectively. The phosphorylation effect of GSK-3β prepared in this study on pT217 was significantly stronger than that of imported products (P<0.05). TEM images showed that fibers appeared in phosphorylated tau441 at 5 d and matured at 14 d. However, no obvious fiber structure was found in the tau441 group. Accordingly, ThT binding assay showed that the fluorescence value of phosphorylated products increased (P<0.05). Moreover, the cytotoxicity of phosphorylated products increased (P<0.05). Conclusion: Recombinant human GSK-3β-His and GSK-3β-His-Bac1 proteins were successfully prepared. These two proteins have the function of catalyzing in vitro phosphorylation of tau protein at amino acids 181, 217 and 404, which provided technical support for related basic research on Alzheimer’s disease.

Key words: Glycogen synthesi kinase-3β    Phosphorylation in vitro    Fiber aggregation
收稿日期: 2022-11-13 出版日期: 2023-05-04
ZTFLH:  Q812  
基金资助: 国家自然科学基金(81271417);山东省重点研发计划(2019JZZY011011)
通讯作者: **电子信箱:yingzhang@bjtu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘振武
王荷
闫子迪
张莹
何金生

引用本文:

刘振武, 王荷, 闫子迪, 张莹, 何金生. 重组人GSK-3β制备及tau磷酸化活性研究*[J]. 中国生物工程杂志, 2023, 43(4): 10-19.

LIU Zhen-wu, WANG He, YAN Zi-di, ZHANG Ying, HE Jin-sheng. Preparation and Tau Phosphorylation Activity of Recombinant Human GSK-3β. China Biotechnology, 2023, 43(4): 10-19.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211025        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/10

图1  pET30a-GSK-3β-His原核表达载体的构建及鉴定
图2  重组人GSK-3β蛋白原核表达的纯化及鉴定
图3  重组杆状病毒基因组DNA的构建及鉴定
图4  重组人GSK-3β蛋白杆状病毒表达的纯化及鉴定
图5  质谱分析p-tau磷酸化位点
图6  GSK-3β催化tau体外磷酸化位点和效果分析
图7  磷酸化反应体系中ATP浓度的优化
图8  磷酸化反应体系中GSK-3β浓度的优化
图9  几种GSK-3β催化tau体外磷酸化的效果比较
图10  GSK-3β处理所得p-tau容易形成纤维
图11  GSK-3β处理所得p-tau的细胞毒性
蛋白名称 密码子优化 表观分子量
/kDa
纯度/% 质量浓度
/(mg·mL-1)
-80°稳定期
/月
p-tau
修饰条件
pT217
产量排序
国外商品
GSK-3β-proCB - 46 90 1.00 3 - -
GSK-3β-His-BacCA - 73 70 0.20 12 3
GSK-3β-His-BacCS - 48 95 0.10 - 4
国内产品
未检索到 - - - - - - -
本研究制品
GSK-3β-His 50 86 0.47 12 1
GSK-3β-His-Bac1 50 81 0.76 12 2
表1  本研究中重组GSK-3β的主要参数列表
[1] Blennow K. A review of fluid biomarkers for Alzheimer’s disease: moving from CSF to blood. Neurology and Therapy, 2017, 6(1): 15-24.
doi: 10.1007/s40120-017-0073-9
[2] Zhou Y, Shi J H, Chu D D, et al. Relevance of phosphorylation and truncation of tau to the etiopathogenesis of Alzheimer’s disease. Frontiers in Aging Neuroscience, 2018, 10: 27.
doi: 10.3389/fnagi.2018.00027 pmid: 29472853
[3] Xu S H, Brunden K R, Trojanowski J Q, et al. Characterization of tau fibrillization in vitro. Alzheimer’s & Dementia, 2010, 6(2): 110-117.
[4] Hanger D P, Anderton B H, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends in Molecular Medicine, 2009, 15(3): 112-119.
doi: 10.1016/j.molmed.2009.01.003 pmid: 19246243
[5] Gong C X, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. Journal of Neural Transmission, 2005, 112(6): 813-838.
doi: 10.1007/s00702-004-0221-0 pmid: 15517432
[6] Kanno T, Tsuchiya A, Tanaka A, et al. Combination of PKCε activation and PTP1B inhibition effectively suppresses Aβ-induced GSK-3β activation and tau phosphorylation. Molecular Neurobiology, 2016, 53(7): 4787-4797.
doi: 10.1007/s12035-015-9405-x pmid: 26328540
[7] Palmqvist S, Janelidze S, Quiroz Y T, et al. Discriminative accuracy of plasma phospho-tau 217 for Alzheimer disease vs other neurodegenerative disorders. JAMA, 2020, 324(8): 772-781.
doi: 10.1001/jama.2020.12134
[8] Goedert M, Jakes R, Crowther R A, et al. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. The Biochemical Journal, 1994, 301(Pt 3): 871-877.
doi: 10.1042/bj3010871
[9] Liu M Y, Sui D X, Dexheimer T, et al. Hyperphosphorylation renders tau prone to aggregate and to cause cell death. Molecular Neurobiology, 2020, 57(11): 4704-4719.
doi: 10.1007/s12035-020-02034-w pmid: 32780352
[10] Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer’s disease. European Journal of Medicinal Chemistry, 2016, 107: 63-81.
doi: 10.1016/j.ejmech.2015.10.018
[1] 侯思佳,陈静,孟剑桥,杜俊红,王聪,梁丹,邬荣领,郭允倩. 胡杨WINDs基因克隆及功能初步分析*[J]. 中国生物工程杂志, 2022, 42(10): 9-20.
[2] 张燕霞,张旭婷,贾永红,雷凤燕,王静,王瑞刚,李国婧. 过表达兴安落叶松TPP基因增强拟南芥对盐胁迫的耐受能力*[J]. 中国生物工程杂志, 2022, 42(8): 21-29.
[3] 田方方,何博,吴毅. 基于酿酒酵母的大片段DNA组装与转移技术进展*[J]. 中国生物工程杂志, 2022, 42(7): 101-112.
[4] 李欣,刘旭霞,张弛. 英国脱欧后基因技术监管趋势及对中国的启示*——基于英国《基因技术报告》的分析[J]. 中国生物工程杂志, 2022, 42(7): 113-120.
[5] 黄耀辉,焦悦,叶纪明. 转基因作物在南非的应用及对我国的启示*[J]. 中国生物工程杂志, 2022, 42(5): 163-172.
[6] 张俊有,王棨临,刘倩,漆思晗,李春燕. CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 24-32.
[7] 陈羿何,李欣淼,彭巍,雷初朝,赵黄青,张子敬,刘贤,黄永震. 三维基因组学在动物遗传育种中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 78-84.
[8] 刘佳萌,李雪莹,刘业学,王稳航,李庆刚,路福平,李玉. 微生物以5-氨基乙酰丙酸为唯一前体物合成血红素的研究进展*[J]. 中国生物工程杂志, 2022, 42(3): 99-109.
[9] 傅云扉,魏琦麟,袁明贵,康桦华,田雅,向蓉,徐志宏. 丁酸梭菌及产丁酸代谢改造*[J]. 中国生物工程杂志, 2022, 42(1/2): 37-45.
[10] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[11] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[12] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[13] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[14] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[15] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.