Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 20-29    DOI: 10.13523/j.cb.2303008
研究报告     
MiR-296-3p调节多囊卵巢综合征大鼠颗粒细胞凋亡的作用机制
白雪1,于新月1,*(),郑春杨2,侯聪3,李敏4
1.北部战区总医院 沈阳 110052
2.沈阳菁华医院有限公司 沈阳 110001
3.辽宁汇智同达生物科学有限责任公司 沈阳 110034
4.北京中源合聚生物科技有限公司 北京 100016
Mechanism of MiR-296-3p Regulating Granulosa Cell Apoptosis in Rats with Polycystic Ovary Syndrome
BAI Xue1,YU Xin-yue1,*(),ZHEN Chun-yang2,HOU Cong3,LI Min4
1. General Hospital of Northern Theater Command, Shenyang 110052, China
2. Shenyang Jinghua Hospital Co., Ltd., Shenyang 110001, China
3. Liaoning Huizhi Tongda Biological Science Co., Ltd., Shenyang 110034, China
4. Beijing Zhongyuan Co., Ltd., Beijing 100016, China
 全文: PDF(1868 KB)   HTML
摘要:

目的:探讨miR-296-3p对多囊卵巢综合征(polycystic ovary syndrome,PCOS)大鼠颗粒细胞凋亡的影响。方法:全自动化学发光免疫分析法检测PCOS大鼠血清雌二醇(estradiol,E2)、孕酮(progesterone,P)、睾酮(testosterone,T)水平;利用苏木素-伊红染色(hematoxylin-eosin staining,HE)检测卵巢病理学改变;TUNEL法检测卵巢细胞凋亡;qPCR检测卵巢miR-296-3p表达水平;将各质粒分别转染卵巢颗粒细胞(ovarian granulosa cells,GCs)后分为miR-NC、miR-296-3p mimic、miR-296-3p inhibitor、miR-296-3p mimic+Vector、miR-296-3p mimic+PRKCA和miR-296-3p mimic+PRKCA+NF-κB组,以未处理的GCs为对照组;Western blot法检测p38、p-p38及NF-κB的表达水平,利用StarBase在线预测和双荧光素酶报告实验验证miR-296-3p与PRKCA的靶向关系,流式细胞术检测细胞凋亡率。结果:与对照组相比,PCOS大鼠卵巢中E2、P、T水平升高,细胞凋亡比例增加,miR-296-3p表达升高;miR-296-3p与PRKCA具有靶向关系,在3'UTR区存在结合位点;与miR-NC组相比,miR-296-3p mimic组PRKCA mRNA表达水平显著下调,p-p38/p38和NF-κB表达上调,miR-296-3p inhibitor组PRKCA mRNA表达水平显著上调,p-p38/p38和NF-κB表达下调;与miR-NC组相比,miR-296-3p mimic组和miR-296-3p mimic+Vector组细胞凋亡比例显著上调;与miR-296-3p mimic组和miR-296-3p mimic+Vector组相比,miR-296-3p mimic+PRKCA组卵巢颗粒细胞凋亡比例显著下调;与miR-296-3p mimic+PRKCA组相比,miR-296-3p mimic+PRKCA+NF-κB组卵巢颗粒细胞凋亡比例显著上调。结论:miR-296-3p通过靶向PRKCA激活p38 MAPK/NF-κB信号通路介导多囊卵巢综合征大鼠颗粒细胞凋亡。

关键词: 多囊卵巢综合征miR-296-3p蛋白激酶Cα卵巢颗粒细胞细胞凋亡    
Abstract:

Objective: To investigate the effect of miR-296-3p on granulosa cell apoptosis in rats with polycystic ovary syndrome (PCOS). Methods: The levels of estradiol (E2), progesterone (P) and testosterone (T) in serum of PCOS rats were detected by automatic chemiluminescence immunoassay; HE staining was used to detect the pathological changes of the ovary; TUNEL was used to detect apoptosis in the ovary; The expression level of miR-296-3p and PRKCA in the ovary was detected by qPCR; Ovarian granulosa cells (GCs) were divided into miR-NC, miR-296-3p mimic, miR-296-3p inhibitor, miR-296-3p mimic+Vector, miR-296-3p mimic+PRKCA and miR-296-3p mimic+PRKCA+NF-κB groups after transfection of various plasmids, and untreated GCs were used as control group. The expression level of p38, p-p38 and NF-κB was detected by Western blot. StarBase website and double luciferase report test predicted and verified the targeting relationship between miR-296-3p and PRKCA, respectively. Flow cytometry was used to detect cell apoptosis rate. Results: Compared with the control group, the levels of E2, P and T in the ovaries of PCOS rats increased; The proportion of apoptosis increased; The expression of miR-296-3p increased. miR-296-3p has a targeting relationship with PRKCA, and there are binding sites in the 3'UTR region. Compared with miR-NC group, the expression level of PRKCA mRNA in miR-296-3p mimic group was significantly decreased, and p-p38/p38 and NF-κB expression was up-regulated. Compared with miR-NC group, the expression level of PRKCA mRNA in miR-296-3p inhibitor group was significantly increased, and p-p38/p38 and NF-κB expression was down-regulated. Compared with the Mir-NC group, the percentage of apoptosis of miR-296-3p mimic and miR-296-3p mimic+Vector groups was significantly up-regulated. Compared with miR-296-3p mimic and miR-29-3p mimic+Vector, the percentage of apoptosis of ovarian granulocyte cells in miR-296-3p mimic+PRKCA group was significantly down-regulated. Compared with miR-296-3p mimic+PRKCA+NF-κB group, the percentage of apoptosis of ovarian granulosa cells in miR-296-3p mimic+PRKCA+NF-κB group was significantly up-regulated. Conclusion: MiR-296-3p activates p38 MAPK/NF-κB signal pathway by targeting PRKCA and mediating granulosa cell apoptosis in rats with polycystic ovary syndrome.

Key words: Polycystic ovarian syndrome    MiR-296-3p    Protein kinase C alpha(PRKCA)    Granular cells of ovary    Apoptosis
收稿日期: 2023-03-02 出版日期: 2023-05-04
ZTFLH:  R285  
通讯作者: *电子信箱:bxzhk5588@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白雪
于新月
郑春杨
侯聪
李敏

引用本文:

白雪, 于新月, 郑春杨, 侯聪, 李敏. MiR-296-3p调节多囊卵巢综合征大鼠颗粒细胞凋亡的作用机制[J]. 中国生物工程杂志, 2023, 43(4): 20-29.

BAI Xue, YU Xin-yue, ZHEN Chun-yang, HOU Cong, LI Min. Mechanism of MiR-296-3p Regulating Granulosa Cell Apoptosis in Rats with Polycystic Ovary Syndrome. China Biotechnology, 2023, 43(4): 20-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2303008        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/20

图1  两组大鼠血清生殖激素水平比较
图2  各组大鼠卵巢组织HE染色切片
图3  各组大鼠卵巢组织TUNEL染色图
图4  各组大鼠卵巢中miR-296-3p的表达
图5  双荧光素酶报告实验检测miR-296-3p与PRKCA的靶向关系
图6  卵巢颗粒细胞中PRKCA的表达
图7  卵巢颗粒细胞中p-p38/p38和NF-κB的表达 Expression of p-p38/p38和NF-κB in cumulus granulosa cells in each group
图8  各组卵巢颗粒细胞凋亡百分比
[1] Escobar-Morreale H F. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology, 2018, 14(5): 270-284.
doi: 10.1038/nrendo.2018.24 pmid: 29569621
[2] Patel S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. The Journal of Steroid Biochemistry and Molecular Biology, 2018, 182: 27-36.
doi: 10.1016/j.jsbmb.2018.04.008
[3] Ibrahim Y F, Alorabi M, Abdelzaher W Y, et al. Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomedicine & Pharmacotherapy, 2022, 149: 112870.
[4] 路玉祥, 李元, 方丹丹, 等. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控. 中国生物工程杂志, 2021, 41(4): 9-17.
Lu Y X, Li Y, Fang D D, et al. The role and expression regulation of miR-5047 in the proliferation and migration of breast cancer cells. China Biotechnology, 2021, 41(4): 9-17.
[5] 唐敏, 万群, 孙恃雷, 等. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响. 中国生物工程杂志, 2020, 40(4): 17-24.
Tang M, Wan Q, Sun S L, et al. The effects of hsa-miR-5195-3p on the proliferation, migration and invasion of human cervical cancer Siha cells. China Biotechnology, 2020, 40(4): 17-24.
[6] Liu J, Ding J L, Qu B, et al. CircPSMC3 alleviates the symptoms of PCOS by sponging miR-296-3p and regulating PTEN expression. Journal of Cellular and Molecular Medicine, 2020, 24(18): 11001-11011.
doi: 10.1111/jcmm.v24.18
[7] Olbryt M, Rusin A, Fokt I, et al. Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p 53 activation and IGF1R downregulation. Investigational New Drugs, 2017, 35(5): 545-555.
doi: 10.1007/s10637-017-0465-9
[8] Fu Q F, Song X, Liu Z, et al. MiRomics and proteomics reveal a miR-296-3p/PRKCA/FAK/ras/c-myc feedback loop modulated by HDGF/DDX5/β-catenin complex in lung adenocarcinoma. Clinical Cancer Research, 2017, 23(20): 6336-6350.
doi: 10.1158/1078-0432.CCR-16-2813 pmid: 28751441
[9] Wang M, Zhong H, Zhang X, et al. EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response. Scientific Reports, 2021, 11(1): 11014.
doi: 10.1038/s41598-021-90398-x pmid: 34040072
[10] Wang X H, Hu Y D, Cui J Y, et al. Coordinated targeting of MMP-2/MMP-9 by miR-296-3p/FOXCUT exerts tumor-suppressing effects in choroidal malignant melanoma. Molecular and Cellular Biochemistry, 2018, 445(1): 25-33.
doi: 10.1007/s11010-017-3248-x
[11] Wang L F, Chen R L, Zhang Y Q. MiR-296-3p targets APEX1 to suppress cell migration and invasion of non-small-cell lung cancer. Oncology Letters, 2019, 18(3): 2612-2618.
doi: 10.3892/ol.2019.10572 pmid: 31402954
[12] Yoon A R, Gao R, Kaul Z, et al. MicroRNA-296 is enriched in cancer cells and downregulates p21WAF 1 mRNA expression via interaction with its 3' untranslated region. Nucleic Acids Research, 2011, 39(18): 8078-8091.
doi: 10.1093/nar/gkr492 pmid: 21724611
[13] Xia H J, Zhao Y X. MiR-155 is high-expressed in polycystic ovarian syndrome and promotes cell proliferation and migration through targeting PDCD4 in KGN cells. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 197-205.
doi: 10.1080/21691401.2019.1699826
[14] Wei Y F, Lu S L, Hu Y, et al. MicroRNA-135a regulates VEGFC expression and promotes luteinized granulosa cell apoptosis in polycystic ovary syndrome. Reproductive Sciences, 2020, 27(7): 1436-1442.
doi: 10.1007/s43032-020-00155-0 pmid: 32016798
[15] Long C Y, Xiao Y X, Li S Y, et al. Upregulation of miR-92a-2-5p potentially contribute to anorectal malformations by inhibiting proliferation and enhancing apoptosis via PRKCA/β-catenin. Biomedicine & Pharmacotherapy, 2020, 127(1): 110117.
[16] Chen Z L, Wei H F, Zhao X L, et al. Metformin treatment alleviates polycystic ovary syndrome by decreasing the expression of MMP-2 and MMP-9 via H19/miR-29b-3p and AKT/mTOR/autophagy signaling pathways. Journal of Cellular Physiology, 2019, 234(11): 19964-19976.
doi: 10.1002/jcp.28594 pmid: 30989649
[17] Sam S, Ehrmann D A. Metformin therapy for the reproductive and metabolic consequences of polycystic ovary syndrome. Diabetologia, 2017, 60(9): 1656-1661.
doi: 10.1007/s00125-017-4306-3 pmid: 28770330
[18] Di Fusco D, Dinallo V, Monteleone I, et al. Metformin inhibits inflammatory signals in the gut by controlling AMPK and p 38 MAP kinase activation. Clinical Science, 2018, 132(11): 1155-1168.
doi: 10.1042/CS20180167
[19] Wang Z, Zhao G X, Zibrila A I, et al. Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p 38 MAPK/NF-κB pathway. Molecular Human Reproduction, 2021, 27(8): gaab045.
doi: 10.1093/molehr/gaab045
[20] Li Z, Ruan Y, Zhang H Y, et al. Tumor-suppressive circular RNAs: mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Science, 2019, 110(12): 3630-3638.
doi: 10.1111/cas.14211 pmid: 31599076
[1] 徐炜民, 邓鑫, 伍锐. 促凋亡蛋白BAK的功能及在病毒感染中作用的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 130-140.
[2] 王婷,刘凯,李柯颖,陈旭,任广明,杨晓明. 敲除Usp13促进棕榈酸诱导的小鼠肝实质细胞凋亡*[J]. 中国生物工程杂志, 2022, 42(4): 9-16.
[3] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[4] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[5] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[6] 徐安健, 李艳萌, 李斯文, 乌姗娜, 张蓓, 黄坚. PHP14沉默对肺癌细胞凋亡的影响及其机制[J]. 中国生物工程杂志, 2017, 37(7): 12-17.
[7] 白欣艳, 温丽敏, 王玉晶, 王海龙, 解军, 郭睿. ANKRD49通过上调Bcl-xL的表达抑制UV诱导GC-1细胞的凋亡[J]. 中国生物工程杂志, 2017, 37(4): 40-47.
[8] 万春红, 张志, 李圣纳, 彭以元, 许亮国. TRAF7的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 93-101.
[9] 陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.
[10] 邱华丽, 穰杰, 丁学知, 胡胜标, 张友明, 朱道奇, 夏立秋. 苦瓜MAP30蛋白的原核表达及其生物活性研究[J]. 中国生物工程杂志, 2014, 34(06): 40-46.
[11] 韩笑, 李娜, 杜培革. 抗肿瘤多肽研究进展[J]. 中国生物工程杂志, 2013, 33(6): 93-98.
[12] 张曦, 刘北忠, 高艳军, 黎亮, 高远梅, 胡秀秀, 马鹏鹏, 钟梁. 干扰 GINS2 表达对HL60细胞增殖和凋亡的影响[J]. 中国生物工程杂志, 2013, 33(3): 41-46.
[13] 魏东, 邹浩, 王琳, 王文举, 骆志玲, 张小文. 靶向miRNA干扰Bmi-1诱导胆囊癌细胞凋亡及上调Caspase-3表达的研究[J]. 中国生物工程杂志, 2013, 33(12): 1-8.
[14] 林颖, 李璞, 单敬轩, 陈晓静, 施慧莉, 霍克克. RIOK3促进了caspase-10对PAK2的酶解激活[J]. 中国生物工程杂志, 2012, 32(08): 1-8.
[15] 秦晓林, 徐勇, 范晓卿, 李武县, 匡文斌, 成凤, 涂植光. TFPI-2对人肝癌细胞生长增殖、凋亡及AFP合成的影响[J]. 中国生物工程杂志, 2011, 31(12): 33-38.