Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 37-51    DOI: 10.13523/j.cb.2207018
综述     
CAR-T联合疗法治疗实体瘤的研究进展
林宏伟,刘珺懿,罗文新()
厦门大学公共卫生学院 国家传染病诊断试剂与疫苗工程技术研究中心 厦门 361102
Advances in CAR-T Combination Therapy for Solid Tumors
LIN Hong-wei,LIU Jun-yi,LUO Wen-xin()
National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
 全文: PDF(881 KB)   HTML
摘要:

CAR-T疗法(chimeric antigen receptor T-cell immunotherapy)即嵌合抗原受体T细胞免疫疗法,是目前肿瘤免疫治疗中较有潜力的策略之一[1],已成功应用于多种血液肿瘤的治疗。但CAR-T疗法在治疗实体瘤领域进展缓慢,存在肿瘤微环境的限制、细胞因子释放综合征以及严重的脱靶效应等诸多挑战[2]。与单一靶向治疗相比,CAR-T联合疗法为改进肿瘤治疗方法提供了新的方向。综述目前常用的CAR-T联合治疗策略,针对CAR-T疗法在实体瘤治疗领域面临的主要挑战,探讨提高CAR-T疗效的潜在方案。

关键词: 肿瘤免疫抑制CAR-T联合治疗    
Abstract:

Over the last decade, Chimeric Antigen Receptor T-cell Immunotherapy(CAR-T) has become one of the promising strategies in tumor immunotherapy. This technique has been successfully applied in the treatment of various blood tumors. However, CAR-T therapy has made slow progress in the treatment of solid tumors, facing many challenges such as limitation of tumor microenvironment, cytokine release syndrome and severe off-target effect. CAR-T combination therapy offers new directions for improving cancer treatment compared to targeted therapy alone. In this article, we review the major challenges of CAR-T therapy in solid tumors in recent years and the current research progress of commonly used CAR-T combination therapy strategies, in order to explore the potential items for improving the efficacy of CAR-T therapy in the future.

Key words: Tumor    Immunosuppression    CAR-T therapy    Combination therapy
收稿日期: 2022-07-11 出版日期: 2023-01-05
ZTFLH:  R730  
通讯作者: 罗文新     E-mail: wxluo@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林宏伟
刘珺懿
罗文新

引用本文:

林宏伟,刘珺懿,罗文新. CAR-T联合疗法治疗实体瘤的研究进展[J]. 中国生物工程杂志, 2022, 42(12): 37-51.

LIN Hong-wei,LIU Jun-yi,LUO Wen-xin. Advances in CAR-T Combination Therapy for Solid Tumors. China Biotechnology, 2022, 42(12): 37-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207018        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/37

图1  CAR-T联合治疗
[1] Depil S, Duchateau P, Grupp S A, et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nature Reviews Drug Discovery, 2020, 19(3): 185-199.
doi: 10.1038/s41573-019-0051-2 pmid: 31900462
[2] Schubert M L, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Annals of Oncology, 2021, 32(1): 34-48.
doi: 10.1016/j.annonc.2020.10.478 pmid: 33098993
[3] He W H, Li Q X, Lu Y, et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Current Gene Therapy, 2022, 22(5): 368-385.
doi: 10.2174/1566523221666211119110755
[4] Liu B Y, Ezeogu L, Zellmer L, et al. Protecting the normal in order to better kill the cancer. Cancer Medicine, 2015, 4(9): 1394-1403.
doi: 10.1002/cam4.488 pmid: 26177855
[5] 王莉新, 吴文斌. NK细胞的免疫监视作用及肿瘤免疫逃逸. 细胞与分子免疫学杂志, 2017, 33(3): 418-422.
Wang L X, Wu W B. NK cells of the immune surveillance function and tumor immune escape. Chinese Journal of Cellular and Molecular Immunology, 2017, 33(3): 418-422.
[6] 张敏, 张红河, 来茂德. 肿瘤免疫编辑中肿瘤微环境的变化. 中华病理学杂志, 2021, 50(9): 1098-1102.
doi: 10.3760/cma.j.cn112151-20201229-00981 pmid: 34496513
Zhang M, Zhang H H, Lai M D. Tumor microenvironment changes in tumor immunoediting. Chinese Journal of Pathology, 2021, 50(9): 1098-1102.
doi: 10.3760/cma.j.cn112151-20201229-00981 pmid: 34496513
[7] Garrido F, Aptsiauri N, Doorduijn E M, et al. The urgent need to recover MHC class I in cancers for effective immunotherapy. Current Opinion in Immunology, 2016, 39: 44-51.
doi: 10.1016/j.coi.2015.12.007 pmid: 26796069
[8] Gil Del Alcazar C R, Alečković M, Polyak K. Immune escape during breast tumor progression. Cancer Immunology Research, 2020, 8(4): 422-427.
[9] Khan M, Maryam A, Qazi J I, et al. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells. International Journal of Biological Sciences, 2015, 11(9): 1100-1112.
doi: 10.7150/ijbs.11595 pmid: 26221076
[10] Wang Q Y, Xie B, Liu S, et al. What happens to the immune microenvironment after PD-1 inhibitor therapy. Frontiers in Immunology, 2021, 12: 773168.
doi: 10.3389/fimmu.2021.773168
[11] 袁贤琳, 何芬. 肿瘤免疫治疗新技术的研究进展. 解剖学研究, 2021, 43(6): 636-640.
Yuan X L, He F. Research progress of new technology of tumor immunotherapy. Anatomy Research, 2021, 43(6): 636-640.
[12] Zhang C, Liu J, Zhong J F, et al. Engineering CAR-T cells. Biomarker Research, 2017, 5: 22.
doi: 10.1186/s40364-017-0102-y pmid: 28652918
[13] Martinez M, Moon E K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Frontiers in Immunology, 2019, 10: 128.
doi: 10.3389/fimmu.2019.00128 pmid: 30804938
[14] Hong M H, Clubb J D, Chen Y Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell, 2020, 38(4): 473-488.
doi: 10.1016/j.ccell.2020.07.005 pmid: 32735779
[15] Newick K, O’Brien S, Moon E, et al. CAR T cell therapy for solid tumors. Annual Review of Medicine, 2017, 68: 139-152.
doi: 10.1146/annurev-med-062315-120245 pmid: 27860544
[16] Liu G N, Rui W, Zhao X Q, et al. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cellular & Molecular Immunology, 2021, 18(5): 1085-1095.
[17] Larson R C, Maus M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nature Reviews Cancer, 2021, 21(3): 145-161.
doi: 10.1038/s41568-020-00323-z pmid: 33483715
[18] Alabanza L, Pegues M, Geldres C, et al. Function of novel anti-CD 19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Molecular Therapy, 2017, 25(11): 2452-2465.
doi: S1525-0016(17)30354-4 pmid: 28807568
[19] Miliotou A N, Papadopoulou L C. CAR T-cell therapy: a new era in cancer immunotherapy. Current Pharmaceutical Biotechnology, 2018, 19(1): 5-18.
doi: 10.2174/1389201019666180418095526 pmid: 29667553
[20] Jayaraman J, Mellody M P, Hou A J, et al. CAR-T design: elements and their synergistic function. EBioMedicine, 2020, 58: 102931.
doi: 10.1016/j.ebiom.2020.102931
[21] Sterner R C, Sterner R M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer Journal, 2021, 11(4): 69.
doi: 10.1038/s41408-021-00459-7 pmid: 33824268
[22] Gagelmann N, Riecken K, Wolschke C, et al. Development of CAR-T cell therapies for multiple myeloma. Leukemia, 2020, 34(9): 2317-2332.
doi: 10.1038/s41375-020-0930-x pmid: 32572190
[23] Chmielewski M, Abken H. CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunology, Immunotherapy: CII, 2012, 61(8): 1269-1277.
[24] Neelapu S S, Locke F L, Bartlett N L, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. The New England Journal of Medicine, 2017, 377(26): 2531-2544.
doi: 10.1056/NEJMoa1707447 pmid: 29226797
[25] Cappell K M, Kochenderfer J N. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nature Reviews Clinical Oncology, 2021, 18(11): 715-727.
doi: 10.1038/s41571-021-00530-z pmid: 34230645
[26] Dawson N A J, Rosado-Sánchez I, Novakovsky G E, et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Science Translational Medicine, 2020, 12(557): eaaz3866.
doi: 10.1126/scitranslmed.aaz3866
[27] Roselli E, Faramand R, Davila M L. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. The Journal of Clinical Investigation, 2021, 131(2): e142030.
doi: 10.1172/JCI142030
[28] Harrison A J, Du X, von Scheidt B, et al. Enhancing co-stimulation of CAR T cells to improve treatment outcomes in solid cancers. Immunotherapy Advances, 2021, 1(1): ltab016.
doi: 10.1093/immadv/ltab016
[29] Zhong X S, Matsushita M, Plotkin J, et al. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Molecular Therapy, 2010, 18(2): 413-420.
doi: 10.1038/mt.2009.210
[30] Xia L, Zheng Z Z, Liu J Y, et al. EGFR-targeted CAR-T cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo. Clinical & Translational Immunology, 2020, 9(5): e01135.
[31] Yi Z Z, Prinzing B L, Cao F, et al. Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Molecular Therapy Methods & Clinical Development, 2018, 9: 70-80.
[32] Künkele A, Johnson A J, Rolczynski L S, et al. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell fas-fasL-dependent AICD. Cancer Immunology Research, 2015, 3(4): 368-379.
doi: 10.1158/2326-6066.CIR-14-0200 pmid: 25576337
[33] Haso W, Lee D W, Shah N N, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood, 2013, 121(7): 1165-1174.
doi: 10.1182/blood-2012-06-438002 pmid: 23243285
[34] Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opinion on Biological Therapy, 2015, 15(8): 1145-1154.
doi: 10.1517/14712598.2015.1046430
[35] Luo H, Su J W, Sun R X, et al. Coexpression of IL7 and CCL 21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2020, 26(20): 5494-5505.
doi: 10.1158/1078-0432.CCR-20-0777
[36] Lanitis E, Rota G, Kosti P, et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. The Journal of Experimental Medicine, 2021, 218(2): e20192203.
doi: 10.1084/jem.20192203
[37] Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Reports, 2017, 21(11): 3205-3219.
doi: S2211-1247(17)31715-1 pmid: 29241547
[38] Ma X C, Shou P S, Smith C, et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nature Biotechnology, 2020, 38(4): 448-459.
doi: 10.1038/s41587-019-0398-2 pmid: 32015548
[39] Raj D, Yang M H, Rodgers D, et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut, 2019, 68(6): 1052-1064.
doi: 10.1136/gutjnl-2018-316595 pmid: 30121627
[40] Amatya C, Pegues M A, Lam N, et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule F7. Molecular Therapy, 2021, 29(2): 702-717.
doi: 10.1016/j.ymthe.2020.10.008 pmid: 33129371
[41] Guercio M, Manni S, Boffa I, et al. Inclusion of the inducible caspase 9 suicide gene in CAR construct increases safety of CAR.CD19 T cell therapy in B-cell malignancies. Frontiers in Immunology, 2021, 12: 755639.
doi: 10.3389/fimmu.2021.755639
[42] Muthuvel M, Srinivasan H, Louis L, et al. Engineering off-the-shelf universal CAR T cells: a silver lining in the cloud. Cytokine, 2022, 156: 155920.
doi: 10.1016/j.cyto.2022.155920
[43] Zhang E H, Gu J Y, Xu H M. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Molecular Cancer, 2018, 17(1): 7.
doi: 10.1186/s12943-018-0759-3 pmid: 29329591
[44] Argani P, Iacobuzio-Donahue C, Ryu B, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2001, 7(12): 3862-3868.
[45] Bui M H T, Seligson D, Han K R, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2003, 9(2): 802-811.
[46] Yeku O, Li X, Brentjens R J. Adoptive T-cell therapy for solid tumors. American Society of Clinical Oncology Educational Book, 2017, 37: 193-204.
doi: 10.1200/EDBK_180328
[47] Marofi F, Motavalli R, Safonov V A, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Research & Therapy, 2021, 12(1): 81.
[48] Westin J R, Kersten M J, Salles G, et al. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: observations from the JULIET, ZUMA-1, and TRANSCEND trials. American Journal of Hematology, 2021, 96(10): 1295-1312.
doi: 10.1002/ajh.26301 pmid: 34310745
[49] Kachala S S, Bograd A J, Villena-Vargas J, et al. Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2014, 20(4): 1020-1028.
doi: 10.1158/1078-0432.CCR-13-1862
[50] Heinmöller P, Gross C, Beyser K, et al. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2003, 9(14): 5238-5243.
[51] Koneru M, O’Cearbhaill R, Pendharkar S, et al. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. Journal of Translational Medicine, 2015, 13: 102.
doi: 10.1186/s12967-015-0460-x pmid: 25890361
[52] Shah N N, Fry T J. Mechanisms of resistance to CAR T cell therapy. Nature Reviews Clinical Oncology, 2019, 16(6): 372-385.
doi: 10.1038/s41571-019-0184-6 pmid: 30837712
[53] Yu S N, Li A P, Liu Q, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. Journal of Hematology & Oncology, 2017, 10(1): 78.
[54] Wagner J, Wickman E, DeRenzo C, et al. CAR T cell therapy for solid tumors: bright future or dark reality. Molecular Therapy, 2020, 28(11): 2320-2339.
doi: 10.1016/j.ymthe.2020.09.015
[55] Zhang B L, Qin D Y, Mo Z M, et al. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Science China Life Sciences, 2016, 59(4): 340-348.
doi: 10.1007/s11427-016-5027-4
[56] Hou A J, Chen L C, Chen Y Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 2021, 20(7): 531-550.
doi: 10.1038/s41573-021-00189-2 pmid: 33972771
[57] Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance. Cell, 2008, 133(5): 775-787.
doi: 10.1016/j.cell.2008.05.009 pmid: 18510923
[58] Gabrilovich D I. Myeloid-derived suppressor cells. Cancer Immunology Research, 2017, 5(1): 3-8.
doi: 10.1158/2326-6066.CIR-16-0297 pmid: 28052991
[59] Yin Y B, Boesteanu A C, Binder Z A, et al. Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Molecular Therapy - Oncolytics, 2018, 11: 20-38.
doi: 10.1016/j.omto.2018.08.002
[60] Quail D F, Joyce J A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 2013, 19(11): 1423-1437.
doi: 10.1038/nm.3394 pmid: 24202395
[61] Stransky N, Cerami E, Schalm S, et al. The landscape of kinase fusions in cancer. Nature Communications, 2014, 5: 4846.
doi: 10.1038/ncomms5846 pmid: 25204415
[62] Ardito F, Giuliani M, Perrone D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of Molecular Medicine, 2017, 40(2): 271-280.
doi: 10.3892/ijmm.2017.3036 pmid: 28656226
[63] Kannaiyan R, Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Review of Anticancer Therapy, 2018, 18(12): 1249-1270.
doi: 10.1080/14737140.2018.1527688 pmid: 30259761
[64] Wu X Q, Luo H, Shi B Z, et al. Combined antitumor effects of sorafenib and GPC3-CAR T cells in mouse models of hepatocellular carcinoma. Molecular Therapy, 2019, 27(8): 1483-1494.
doi: S1525-0016(19)30186-8 pmid: 31078430
[65] Newick K, O’Brien S, Moon E, et al. CAR T cell therapy for solid tumors. Annual Review of Medicine, 2017, 68: 139-152.
doi: 10.1146/annurev-med-062315-120245 pmid: 27860544
[66] Stengel C, Newman S P, Leese M P, et al. The in vitro and in vivo activity of the microtubule disruptor STX140 is mediated by Hif-1 alpha and CAIX expression. Anticancer Research, 2015, 35(10): 5249-5261.
pmid: 26408684
[67] Schmid T A, Gore M E. Sunitinib in the treatment of metastatic renal cell carcinoma. Therapeutic Advances in Urology, 2016, 8(6): 348-371.
pmid: 27904651
[68] Li H Z, Ding J G, Lu M M, et al. CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. Jouranl of Immunother, 2020, 43(1): 16-28.
[69] Mohamed A J, Yu L, Bäckesjö C M, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunological Reviews, 2009, 228(1): 58-73.
doi: 10.1111/j.1600-065X.2008.00741.x
[70] Wu C, Chen Z J, Dardalhon V, et al. The transcription factor musculin promotes the unidirectional development of peripheral Treg cells by suppressing the TH 2 transcriptional program. Nature Immunology, 2017, 18(3): 344-353.
doi: 10.1038/ni.3667
[71] Qin J S, Johnstone T G, Baturevych A, et al. Antitumor potency of an anti-CD 19 chimeric antigen receptor T-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib. Jouranl of Immunother, 2020, 43(4): 107-120.
[72] Wu Y Y, Sarkissyan M, Vadgama J V. Epigenetics in breast and prostate cancer. Methods in Molecular Biology, 2015, 1238: 425-466.
doi: 10.1007/978-1-4939-1804-1_23 pmid: 25421674
[73] Cheng Y, He C, Wang M N, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, 2019, 4: 62.
doi: 10.1038/s41392-019-0095-0 pmid: 31871779
[74] Christofides A, Karantanos T, Bardhan K, et al. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2. Oncotarget, 2016, 7(51): 85624-85640.
doi: 10.18632/oncotarget.12928 pmid: 27793053
[75] Song D G, Ye Q R, Santoro S, et al. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Human Gene Therapy, 2013, 24(3): 295-305.
doi: 10.1089/hum.2012.143 pmid: 23297870
[76] Li S J, Xue L, Wang M, et al. Decitabine enhances cytotoxic effect of T cells with an anti-CD19 chimeric antigen receptor in treatment of lymphoma. Onco Targets and Therapy, 2019, 12: 5627-5638.
doi: 10.2147/OTT.S198567
[77] Hogg S J, Vervoort S J, Deswal S, et al. BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Reports, 2017, 18(9): 2162-2174.
doi: S2211-1247(17)30176-6 pmid: 28249162
[78] Zhu H R, Bengsch F, Svoronos N, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Reports, 2016, 16(11): 2829-2837.
doi: S2211-1247(16)31096-8 pmid: 27626654
[79] Xia L, Zheng Z Z, Liu J Y, et al. Targeting triple-negative breast cancer with combination therapy of EGFR CAR T cells and CDK7 inhibition. Cancer Immunology Research, 2021, 9(6): 707-722.
doi: 10.1158/2326-6066.CIR-20-0405
[80] Leone R D, Lo Y C, Powell J D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Computational and Structural Biotechnology Journal, 2015, 13: 265-272.
doi: 10.1016/j.csbj.2015.03.008 pmid: 25941561
[81] Beavis P A, Henderson M A, Giuffrida L, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. The Journal of Clinical Investigation, 2017, 127(3): 929-941.
doi: 10.1172/JCI89455
[82] Buss N A, Henderson S J, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Current Opinion in Pharmacology, 2012, 12(5): 615-622.
doi: 10.1016/j.coph.2012.08.001 pmid: 22920732
[83] Miliotou A N, Papadopoulou L C. CAR T-cell therapy: a new era in cancer immunotherapy. Current Pharmaceutical Biotechnology, 2018, 19(1): 5-18.
doi: 10.2174/1389201019666180418095526 pmid: 29667553
[84] Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl 3): 4-10.
doi: 10.1159/000088478
[85] Lanitis E, Kosti P, Ronet C, et al. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. Journal for Immunotherapy of Cancer, 2021, 9(8): e002151.
doi: 10.1136/jitc-2020-002151
[86] Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. The Journal of Biochemistry, 2014, 156(1): 1-10.
doi: 10.1093/jb/mvu031
[87] Garcia J, Hurwitz H I, Sandler A B, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treatment Reviews, 2020, 86: 102017.
doi: 10.1016/j.ctrv.2020.102017
[88] Li M G, Kroetz D L. Bevacizumab-induced hypertension: clinical presentation and molecular understanding. Pharmacology & Therapeutics, 2018, 182: 152-160.
[89] Bocca P, di Carlo E, Caruana I, et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology, 2017, 7(1): e1378843.
doi: 10.1080/2162402X.2017.1378843
[90] Dermime S, Merhi M, Merghoub T. Editorial: dynamic biomarkers of response to anti-immune checkpoint inhibitors in cancer. Frontiers in Immunology, 2021, 12: 781872.
doi: 10.3389/fimmu.2021.781872
[91] Lei X, Lei Y, Li J K, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Letters, 2020, 470: 126-133.
doi: S0304-3835(19)30564-6 pmid: 31730903
[92] Rowshanravan B, Halliday N, Sansom D M. CTLA-4: a moving target in immunotherapy. Blood, 2018, 131(1): 58-67.
doi: 10.1182/blood-2017-06-741033 pmid: 29118008
[93] Yi M, Jiao D C, Xu H X, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Molecular Cancer, 2018, 17(1): 129.
doi: 10.1186/s12943-018-0864-3 pmid: 30139382
[94] Maruhashi T, Sugiura D, Okazaki I M, et al. LAG-3: from molecular functions to clinical applications. Journal for Immunotherapy of Cancer, 2020, 8(2): e001014.
doi: 10.1136/jitc-2020-001014
[95] Das M, Zhu C, Kuchroo V K. Tim-3 and its role in regulating anti-tumor immunity. Immunological Reviews, 2017, 276(1): 97-111.
doi: 10.1111/imr.12520 pmid: 28258697
[96] Cedrés S, Ponce-Aix S, Zugazagoitia J, et al. Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). PLoS One, 2015, 10(3): e0121071.
[97] Cherkassky L, Morello A, Villena-Vargas J, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. The Journal of Clinical Investigation, 2016, 126(8): 3130-3144.
doi: 10.1172/JCI83092
[98] Adusumilli P S, Zauderer M G, Rivière I, et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discovery, 2021, 11(11): 2748-2763.
doi: 10.1158/2159-8290.CD-21-0407 pmid: 34266984
[99] Lee S S, Cheah Y K. The interplay between microRNAs and cellular components of tumour microenvironment (TME) on non-small-cell lung cancer (NSCLC) progression. Journal of Immunology Research, 2019, 2019: 3046379.
[100] Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. European Journal of Pharmacology, 2021, 907: 174365.
doi: 10.1016/j.ejphar.2021.174365
[101] Hinshaw D C, Shevde L A. The tumor microenvironment innately modulates cancer progression. Cancer Research, 2019, 79(18): 4557-4566.
doi: 10.1158/0008-5472.CAN-18-3962 pmid: 31350295
[102] Fultang L, Panetti S, Ng M, et al. MDSC targeting with gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine, 2019, 47: 235-246.
doi: S2352-3964(19)30547-X pmid: 31462392
[103] Wu H, Fu X L, Zhai Y J, et al. Development of effective tumor vaccine strategies based on immune response cascade reactions. Advanced Healthcare Materials, 2021, 10(13): e2100299.
[104] Morse M A, Gwin W R 3rd, Mitchell D A. Vaccine therapies for cancer: then and now. Targeted Oncology, 2021, 16(2): 121-152.
doi: 10.1007/s11523-020-00788-w pmid: 33512679
[105] Santos P M, Butterfield L H. Dendritic cell-based cancer vaccines. Journal of Immunology, 2018, 200(2): 443-449.
doi: 10.4049/jimmunol.1701024 pmid: 29311386
[106] Gilboa E. DC-based cancer vaccines. The Journal of Clinical Investigation, 2007, 117(5): 1195-1203.
doi: 10.1172/JCI31205
[107] Ramachandran M, Dimberg A, Essand M. The cancer-immunity cycle as rational design for synthetic cancer drugs: novel DC vaccines and CAR T-cells. Seminars in Cancer Biology, 2017, 45: 23-35.
doi: S1044-579X(17)30030-5 pmid: 28257957
[108] Akahori Y, Wang L N, Yoneyama M, et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT 1 can be enhanced by vaccination. Blood, 2018, 132(11): 1134-1145.
[109] Wu M R, Zhang L T, Zhang H Z, et al. CD19 chimeric antigen receptor-redirected T cells combined with epidermal growth factor receptor pathway substrate 8 peptide-derived dendritic cell vaccine in leukemia. Cytotherapy, 2019, 21(6): 659-670.
doi: S1465-3249(19)30374-3 pmid: 31031152
[110] Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20(1): 41.
doi: 10.1186/s12943-021-01335-5 pmid: 33632261
[111] Nemunaitis J. Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Review of Vaccines, 2005, 4(3): 259-274.
pmid: 16026242
[112] Reinhard K, Rengstl B, Oehm P, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science, 2020, 367(6476): 446-453.
doi: 10.1126/science.aay5967 pmid: 31896660
[113] de Brito R C F, De O Cardoso J M, Reis L E S, et al. Peptide vaccines for leishmaniasis. Frontiers in Immunology, 2018, 9: 1043.
doi: 10.3389/fimmu.2018.01043 pmid: 29868006
[114] Malonis R J, Lai J R, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chemical Reviews, 2020, 120(6): 3210-3229.
doi: 10.1021/acs.chemrev.9b00472 pmid: 31804810
[115] Ma L Y, Dichwalkar T, Chang J Y H, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science, 2019, 365(6449): 162-168.
doi: 10.1126/science.aav8692 pmid: 31296767
[116] Mondal M, Guo J G, He P, et al. Recent advances of oncolytic virus in cancer therapy. Human Vaccines & Immunotherapeutics, 2020, 16(10): 2389-2402.
[117] Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. Journal for Immunotherapy of Cancer, 2017, 5(1): 90.
doi: 10.1186/s40425-017-0294-6 pmid: 29157300
[118] Endo Y, Sakai R, Ouchi M, et al. Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene, 2008, 27(17): 2375-2381.
doi: 10.1038/sj.onc.1210884 pmid: 17982491
[119] Guo Z S, Liu Z Q, Bartlett D L. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Frontiers in Oncology, 2014, 4: 74.
doi: 10.3389/fonc.2014.00074 pmid: 24782985
[120] Zarezadeh Mehrabadi A, Roozbahani F, Ranjbar R, et al. Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World Journal of Surgical Oncology, 2022, 20(1): 16.
doi: 10.1186/s12957-021-02486-x pmid: 35027068
[121] Tang X Y, Ding Y S, Zhou T, et al. Tumor-tagging by oncolytic viruses: a novel strategy for CAR-T therapy against solid tumors. Cancer Letters, 2021, 503: 69-74.
doi: 10.1016/j.canlet.2021.01.014
[122] Nishio N, Diaconu I, Liu H, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Research, 2014, 74(18): 5195-5205.
doi: 10.1158/0008-5472.CAN-14-0697 pmid: 25060519
[123] Watanabe K, Luo Y P, Da T, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3(7): e99573.
doi: 10.1172/jci.insight.99573
[124] Moon E K, Wang L C S, Bekdache K, et al. Intra-tumoral delivery of CXCL 11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. OncoImmunology, 2018, 7(3): e1395997.
doi: 10.1080/2162402X.2017.1395997
[125] Huang J H, Zheng M J, Zhang Z L, et al. Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunology, Immunotherapy, 2021, 70(9): 2453-2465.
doi: 10.1007/s00262-021-02856-0
[126] Rosewell Shaw A, Porter C E, Watanabe N, et al. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Molecular Therapy, 2017, 25(11): 2440-2451.
doi: S1525-0016(17)30424-0 pmid: 28974431
[127] Tanoue K, Rosewell Shaw A, Watanabe N, et al. Armed oncolytic adenovirus-expressing PD-L 1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Research, 2017, 77(8): 2040-2051.
[128] Wenthe J, Naseri S, Labani-Motlagh A, et al. Boosting CAR T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunology, Immunotherapy: CII, 2021, 70(10): 2851-2865.
doi: 10.1007/s00262-021-02895-7
[129] Klinger M, Benjamin J, Kischel R, et al. Harnessing T cells to fight cancer with BiTE ® antibody constructs - past developments and future directions. Immunological Reviews, 2016, 270(1): 193-208.
doi: 10.1111/imr.12393
[130] Fajardo C A, Guedan S, Rojas L A, et al. Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy. Cancer Research, 2017, 77(8): 2052-2063.
doi: 10.1158/0008-5472.CAN-16-1708 pmid: 28143835
[131] Wing A, Fajardo C A, Posey A D Jr, et al. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunology Research, 2018, 6(5): 605-616.
doi: 10.1158/2326-6066.CIR-17-0314 pmid: 29588319
[132] Park A K, Fong Y, Kim S I, et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Science Translational Medicine, 2020, 12(559): eaaz1863.
[133] Porter C E, Rosewell Shaw A, Jung Y, et al. Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors. Molecular Therapy, 2020, 28(5): 1251-1262.
doi: S1525-0016(20)30102-7 pmid: 32145203
[134] Willmon C, Harrington K, Kottke T, et al. Cell carriers for oncolytic viruses: fed Ex for cancer therapy. Molecular Therapy, 2009, 17(10): 1667-1676.
doi: 10.1038/mt.2009.194 pmid: 19690519
[135] Evgin L, Kottke T, Tonne J, et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Science Translational Medicine, 2022, 14(640): eabn2231.
doi: 10.1126/scitranslmed.abn2231
[136] Mardi A, Shirokova A V, Mohammed R N, et al. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell International, 2022, 22: 168.
doi: 10.1186/s12935-022-02585-z pmid: 35488303
[137] VanSeggelen H, Tantalo D G, Afsahi A, et al. Chimeric antigen receptor-engineered T cells as oncolytic virus carriers. Molecular Therapy Oncolytics, 2015, 2: 15014.
doi: 10.1038/mto.2015.14
[138] Evgin L, Huff A, Wongthida P, et al. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nature Communications, 2020, 11(1): 3187.
doi: 10.1038/s41467-020-17011-z pmid: 32581235
[139] Lamers C H, Sleijfer S, van Steenbergen S, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Molecular Therapy, 2013, 21(4): 904-912.
doi: 10.1038/mt.2013.17 pmid: 23423337
[140] Anampa J, Chen A, Wright J, et al. Phase I trial of veliparib, a poly ADP ribose polymerase inhibitor, plus metronomic cyclophosphamide in metastatic HER2-negative breast cancer. Clinical Breast Cancer, 2018, 18(1): e135-e142.
doi: 10.1016/j.clbc.2017.08.013
[141] Sistigu A, Yamazaki T, Vacchelli E, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20(11): 1301-1309.
doi: 10.1038/nm.3708 pmid: 25344738
[142] Ramakrishnan R, Huang C, Cho H I, et al. Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Research, 2012, 72(21): 5483-5493.
doi: 10.1158/0008-5472.CAN-12-2236 pmid: 22942258
[143] Parente-Pereira A C, Whilding L M, Brewig N, et al. Synergistic chemoimmunotherapy of epithelial ovarian cancer using ErbB-retargeted T cells combined with carboplatin. Journal of Immunology, 2013, 191(5): 2437-2445.
doi: 10.4049/jimmunol.1301119 pmid: 23898037
[144] Whilding L M, Maher J. ErbB-targeted CAR T-cell immunotherapy of cancer. Immunotherapy, 2015, 7(3): 229-241.
doi: 10.2217/imt.14.120 pmid: 25804476
[145] Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy-how far can we go. Nature Clinical Practice Oncology, 2006, 3(12): 668-681.
doi: 10.1038/ncponc0666
[146] Rosenberg S A, Dudley M E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Current Opinion in Immunology, 2009, 21(2): 233-240.
doi: 10.1016/j.coi.2009.03.002 pmid: 19304471
[147] Santoni M, Heng D Y C, Aurilio G, et al. Combining radiotherapy with immunocheckpoint inhibitors or CAR-T in renal cell carcinoma. Current Drug Targets, 2020, 21(4): 416-423.
doi: 10.2174/1389450120666191017113051 pmid: 31625471
[148] Xu J J, Wang Y L, Shi J, et al. Combination therapy: a feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncology Letters, 2018, 16(2): 2063-2070.
doi: 10.3892/ol.2018.8946 pmid: 30008901
[149] Sharma A, Bode B, Wenger R H, et al. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One, 2011, 6(11): e28217.
doi: 10.1371/journal.pone.0028217
[150] Aymeric L, Apetoh L, Ghiringhelli F, et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Research, 2010, 70(3): 855-858.
doi: 10.1158/0008-5472.CAN-09-3566 pmid: 20086177
[151] Adusumilli P S, Zauderer M G, Rusch V W, et al. Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent. Journal of Clinical Oncology, 2019, 37(15_suppl): 2511.
doi: 10.1200/JCO.19.01207
[152] Chen Q, Wang C, Zhang X D, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14(1): 89-97.
doi: 10.1038/s41565-018-0319-4
[153] Luskin M R, Murakami M A, Manalis S R, et al. Targeting minimal residual disease: a path to cure. Nature Reviews Cancer, 2018, 18(4): 255-263.
doi: 10.1038/nrc.2017.125
[154] Li H J, Wang Z J, Ogunnaike E, et al. Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. National Science Review, 2021, 9(3): nwab172.
doi: 10.1093/nsr/nwab172
[155] Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I: C). Advanced Drug Delivery Reviews, 2008, 60(7): 805-812.
doi: 10.1016/j.addr.2007.11.005 pmid: 18262679
[156] Di S M, Zhou M, Pan Z Y, et al. Combined adjuvant of poly I: C improves antitumor effects of CAR-T cells. Frontiers in Oncology, 2019, 9: 241.
doi: 10.3389/fonc.2019.00241
[157] Lu X J. Impact of IL-12 in cancer. Current Cancer Drug Targets, 2017, 17(8): 682-697.
[158] Chi X W, Yang P W, Zhang E H, et al. Significantly increased anti-tumor activity of carcinoembryonic antigen-specific chimeric antigen receptor T cells in combination with recombinant human IL-12. Cancer Medicine, 2019, 8(10): 4753-4765.
doi: 10.1002/cam4.2361 pmid: 31237116
[159] Krönke J, Udeshi N D, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF 3 in multiple myeloma cells. Science, 2014, 343(6168): 301-305.
doi: 10.1126/science.1244851 pmid: 24292625
[160] Galustian C, Meyer B, Labarthe M C, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunology, Immunotherapy: CII, 2009, 58(7): 1033-1045.
doi: 10.1007/s00262-008-0620-4
[161] Works M, Soni N, Hauskins C, et al. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. Molecular Cancer Therapeutics, 2019, 18(12): 2246-2257.
doi: 10.1158/1535-7163.MCT-18-1146 pmid: 31395689
[162] Maleki F, Sadeghifard N, Hosseini H M, et al. Growth-inhibitory effects of TGFαL3-SEB chimeric protein on colon cancer cell line. Biomed Pharmacother, 2019, 110: 190-196.
doi: S0753-3322(18)35751-2 pmid: 30471512
[163] von Scheidt B, Wang M Y, Oliver A J, et al. Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(50): 25229-25235.
[164] Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochemical Pharmacology, 2020, 180: 114147.
doi: 10.1016/j.bcp.2020.114147
[165] Yang M Y, Wang L, Ni M, et al. Dual effects of cyclooxygenase inhibitors in combination with CD 19 CAR-T cell immunotherapy. Frontiers in Immunology, 2021, 12: 670088.
doi: 10.3389/fimmu.2021.670088
[166] Nath S, Roy L D, Grover P, et al. Mucin 1 regulates Cox-2 gene in pancreatic cancer. Pancreas, 2015, 44(6): 909-917.
doi: 10.1097/MPA.0000000000000371
[167] Yazdanifar M, Zhou R, Grover P, et al. Overcoming immunological resistance enhances the efficacy of a novel anti-tMUC1-CAR T cell treatment against pancreatic ductal adenocarcinoma. Cells, 2019, 8(9): 1070.
doi: 10.3390/cells8091070
[168] Milone M C, Xu J, Chen S J, et al. Engineering-enhanced CAR T cells for improved cancer therapy. Nature Cancer, 2021, 2(8): 780-793.
doi: 10.1038/s43018-021-00241-5
[1] 杨子荣,杨璇,倪婷婷,潘聪,谭诗生,王姿. 可利霉素通过调控巨噬细胞极化影响黑色素瘤的增殖*[J]. 中国生物工程杂志, 2022, 42(7): 12-23.
[2] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[3] 王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.
[4] 杨换连,邱飞,王国权,刁勇. 肿瘤类器官在药物筛选和个性化用药中的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 47-53.
[5] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[6] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[7] 王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.
[8] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[9] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[10] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[11] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[12] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[13] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[14] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[15] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.