Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (7): 12-23    DOI: 10.13523/j.cb.2203018
研究报告     
可利霉素通过调控巨噬细胞极化影响黑色素瘤的增殖*
杨子荣1,杨璇1,倪婷婷2,潘聪3,谭诗生1,2,**(),王姿1,2,**()
1. 贵州大学医学院 贵阳 550025
2. 贵州省人民医院肿瘤科 贵阳 550002
3. 四川大学 生物治疗国家重点实验室 成都 610041
Carrimycin Affects Melanoma Proliferation by Regulating Macrophage Polarization
Zi-rong YANG1,Xuan YANG1,Ting-ting NI2,Cong PAN3,Shi-sheng TAN1,2,**(),Zi WANG1,2,**()
1. Medicine College, Guizhou University, Guiyang 550025, China
2. Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
3. State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
 全文: PDF(6710 KB)   HTML
摘要: 目的 探讨可利霉素(CAM)是否通过调节巨噬细胞极化,继而影响黑色素瘤的发生发展。方法 通过实时荧光定量聚合酶链反应(Q-RT-PCR)和Western blot检测CAM对巨噬细胞极化的影响;流式细胞术和CCK-8法检测CAM对小鼠体内外巨噬细胞吞噬和增殖的影响;构建B16-F10细胞系荷瘤模型评价CAM对黑色素瘤的抗肿瘤作用。结果 CAM可上调M1巨噬细胞TNF-αiNOS的水平,下调M2中Arg-1的水平;上调p-STAT1表达,下调p-STAT3表达。CAM抑制黑色素瘤的发生发展,抑瘤率为41.6%,促进M1巨噬细胞数量增加 (P<0.05)。结论 CAM促进体内M1巨噬细胞数量增多,抑制黑色素瘤的进展,提示CAM可能通过诱导巨噬细胞向M1巨噬细胞极化发挥抗肿瘤作用。
关键词: 可利霉素黑色素瘤抗肿瘤巨噬细胞极化    
Abstract:

To investigate whether carrimycin (CAM) affects the occurrence and development of melanoma by regulating the polarization of macrophages, and the following related cell biology assays were used to examine its function. Methods: The effect of CAM on macrophage polarization was detected by real-time quantitative polymerase chain reaction (Q-RT-PCR) and Western blot. Flow cytometry and Cell Counting Kit-8 were used to detect the effect of CAM on mouse macrophages in vitro and in vivo phagocytosis and proliferation. Cell line-derived xenograft model was constructed via B16-F10 to evaluate the anti-tumor effect of CAM on melanoma. Results: In the mRNA level, CAM could up-regulate the levels of TNF-α and iNOS in M1 and down-regulate the level of Arg-1 in M2. In the protein level, CAM can increase the expression of p-STAT1 and decrease the expression of p-STAT3. In the cell line-derived xenograft model, these data shown that the occurrence and CAM development of melanoma was inhibited after CAM treatment, the tumor inhibition rate was 41.6%, and promoted the increase of the number of M1 macrophages (P<0.05). Conclusion: CAM promotes the increase in the number of M1 macrophages in vivo and inhibits the progression of melanoma, suggesting that CAM may achieve anti-tumor effects by inducing the polarization of macrophages to M1.

Key words: Carrimycin    Melanoma    Anti-tumor    Macrophage    Polarization
收稿日期: 2022-03-08 出版日期: 2022-08-03
ZTFLH:  Q813  
基金资助: *贵州省海外高层次人才创新创业基金([2019] 03);国家自然科学基金(81860535);贵州省自然科学基金(黔科合基础[2020]1Y339(黔科合基础[2020]1Y339)
通讯作者: 谭诗生,王姿     E-mail: wangzi@gz5055.com;tssh18018@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨子荣
杨璇
倪婷婷
潘聪
谭诗生
王姿

引用本文:

杨子荣,杨璇,倪婷婷,潘聪,谭诗生,王姿. 可利霉素通过调控巨噬细胞极化影响黑色素瘤的增殖*[J]. 中国生物工程杂志, 2022, 42(7): 12-23.

Zi-rong YANG,Xuan YANG,Ting-ting NI,Cong PAN,Shi-sheng TAN,Zi WANG. Carrimycin Affects Melanoma Proliferation by Regulating Macrophage Polarization. China Biotechnology, 2022, 42(7): 12-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203018        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I7/12

Gene Primer Sets:5'→3'
TNF-α Forward primer: ACCCTCACACTCACAAACCA
Reverse primer: ACAAGGTACAACCCATCGGC
iNOS Forward primer: GGAGTGACGGCAAACATGACT
Reverse primer: TCGATGCACAACTGGGTGAAC
Arg-1 Forward primer: TGTCCCTAATGACAGCTCCTT
Reverse primer: GCATCCACCCAAATGACACAT
β-actin Forward primer: ACTATTGGCAACGAGCGGTTC
Reverse primer: ACGGATGTCAACGTCACACTTC
表1  引物序列
图1  CAM 对体外巨噬细胞吞噬和增殖的影响
图2  定量-RT PCR 分析 CAM 对 RAW246.7 细胞极化的影响
图3  定量-RT PCR 分析 CAM 对原代巨噬细胞极化的影响
图4  Western blot检测CAM对巨噬细胞极化通路蛋白的作用
图5  CAM对体内单核细胞和巨噬细胞增殖的影响
图6  CAM 在小鼠黑色素瘤模型中的抗肿瘤作用
[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660
[2] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7-33.
doi: 10.3322/caac.21654
[3] Hao T Y, He W Q. Advances in metabolic engineering of macrolide antibiotics. Chinese Journal of Biotechnology, 2021, 37(5): 1737-1747.
[4] dos Santos G C M, Rosado L H G, Alves M C C, et al. Fipronil tablets: development and pharmacokinetic profile in beagle dogs. AAPS PharmSciTech, 2019, 21(1): 9.
doi: 10.1208/s12249-019-1571-0
[5] Wang M J, Xue J, Zou W B, et al. Identification of the components of bitespiramycin by liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66: 402-410.
doi: 10.1016/j.jpba.2012.03.013
[6] Dai J L, Wang Y G, Liu J J, et al. The regulatory genes involved in spiramycin and bitespiramycin biosynthesis. Microbiological Research, 2020, 240: 126532.
doi: 10.1016/j.micres.2020.126532
[7] Li Z L, Wang Y H, Chu J, et al. Effect of branched-chain amino acids, valine, isoleucine and leucine on the biosythesis of bitespiramycin 4″-O-acylspiramycins. Brazilian Journal of Microbiology, 2009, 40(4): 734-746.
doi: 10.1590/S1517-83822009000400003
[8] Gao X W, Wang Y H, Chu J. A preliminary study on the impact of exogenous A-factor analogue 1, 4-butyrolactone on stimulating bitespiramycin biosynthesis. Bioprocess and Biosystems Engineering, 2019, 42(12): 1903-1913.
doi: 10.1007/s00449-019-02184-9
[9] Reijnders T D Y, Saris A, Schultz M J, et al. Immunomodulation by macrolides: therapeutic potential for critical care. The Lancet Respiratory Medicine, 2020, 8(6): 619-630.
doi: 10.1016/S2213-2600(20)30080-1
[10] He W Q, Yang C P, Zhao X F, et al. Antimicrobial activity of bitespiramycin, a new genetically engineered macrolide. Bioorganic & Medicinal Chemistry Letters, 2017, 27(19): 4576-4577.
doi: 10.1016/j.bmcl.2017.08.046
[11] Liang S Y, Zhao T C, Zhou Z H, et al. Anti-tumor effect of carrimycin on oral squamous cell carcinoma cells in vitro and in vivo. Translational Oncology, 2021, 14(6): 101074.
doi: 10.1016/j.tranon.2021.101074
[12] Vitale I, Manic G, Coussens L M, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metabolism, 2019, 30(1): 36-50.
doi: S1550-4131(19)30304-3 pmid: 31269428
[13] Funes S C, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunology, 2018, 154(2): 186-195.
doi: 10.1111/imm.12910
[14] Orecchioni M, Ghosheh Y, Pramod A B, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Frontiers in Immunology, 2019, 10: 1084.
doi: 10.3389/fimmu.2019.01084 pmid: 31178859
[15] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 2018, 233(9): 6425-6440.
doi: 10.1002/jcp.26429 pmid: 29319160
[16] Bashir S, Sharma Y, Elahi A, et al. Macrophage polarization: the link between inflammation and related diseases. Inflammation Research, 2016, 65(1): 1-11.
[17] Gordon S, Martinez F O. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32(5): 593-604.
doi: 10.1016/j.immuni.2010.05.007
[18] Wang P P, Wang H H, Huang Q Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics, 2019, 9(6): 1714-1727.
doi: 10.7150/thno.30716
[19] Hao J, Hu Y X, Li Y M, et al. Involvement of JNK signaling in IL4-induced M 2 macrophage polarization. Experimental Cell Research, 2017, 357(2): 155-162.
doi: 10.1016/j.yexcr.2017.05.010
[20] Braga T T, Agudelo J S H, Camara N O S.Macrophages during the fibrotic process: M2 as friend and foe. Frontiers in Immunology, 2015, 6: 602.
[21] Porta C, Riboldi E, Ippolito A, et al. Molecular and epigenetic basis of macrophage polarized activation. Seminars in Immunology, 2015, 27(4): 237-248.
doi: 10.1016/j.smim.2015.10.003
[22] Haag S, Murthy A. Murine monocyte and macrophage culture. Bio-Protocol, 2021, 11(6): e3928.
[23] Yan H Y, Sun J, Wang K, et al. Repurposing carrimycin as an antiviral agent against human coronaviruses, including the currently pandemic SARS-CoV-2. Acta Pharmaceutica Sinica B, 2021, 11(9): 2850-2858.
doi: 10.1016/j.apsb.2021.02.024
[24] Research C M.The clinical study of carrimycin on treatment patients with COVID-19. Case Medical Research, 2020.
[25] Jin Y, Zuo H X, Li M Y, et al. Anti-tumor effects of carrimycin and monomeric isovalerylspiramycin I on hepatocellular carcinoma in vitro and in vivo. Frontiers in Pharmacology, 2021, 12: 774231.
doi: 10.3389/fphar.2021.774231
[26] Biswas S K, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 2010, 11(10): 889-896.
doi: 10.1038/ni.1937
[27] Atri C, Guerfali F, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, 2018, 19(6): 1801.
doi: 10.3390/ijms19061801
[28] Laskin D L, Sunil V R, Gardner C R, et al. Macrophages and tissue injury: agents of defense or destruction? Annual Review of Pharmacology and Toxicology, 2011, 51: 267-288.
doi: 10.1146/annurev.pharmtox.010909.105812 pmid: 20887196
[29] Chen Y L, Zhang X B. Pivotal regulators of tissue homeostasis and cancer: macrophages. Experimental Hematology & Oncology, 2017, 6: 23.
[30] Verhoeven Y, Tilborghs S, Jacobs J, et al. The potential and controversy of targeting STAT family members in cancer. Seminars in Cancer Biology, 2020, 60: 41-56.
doi: S1044-579X(19)30051-3 pmid: 31605750
[31] Bharadwaj U, Kasembeli M M, Robinson P, et al. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacological Reviews, 2020, 72(2): 486-526.
doi: 10.1124/pr.119.018440 pmid: 32198236
[32] Ju H T, Li X, Li H, et al. Mediation of multiple pathways regulating cell proliferation, migration, and apoptosis in the human malignant glioma cell line U87MG via unphosphorylated STAT1: laboratory investigation. Journal of Neurosurgery, 2013, 118(6): 1239-1247.
doi: 10.3171/2013.3.JNS122051
[33] Zou S L, Tong Q Y, Liu B W, et al. Targeting STAT 3 in cancer immunotherapy. Molecular Cancer, 2020, 19(1): 145.
doi: 10.1186/s12943-020-01258-7
[34] Huang X, Li Y, Fu M G, et al. Polarizing macrophages in vitro. Methods in Molecular Biology (Clifton, N J), 2018, 1784: 119-126.
[35] Oh H, Park S H, Kang M K, et al. Asaronic acid attenuates macrophage activation toward M 1 phenotype through inhibition of NF-κB pathway and JAK-STAT signaling in glucose-loaded murine macrophages. Journal of Agricultural and Food Chemistry, 2019, 67(36): 10069-10078.
doi: 10.1021/acs.jafc.9b03926
[36] Chiang C F, Chao T T, Su Y F, et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget, 2017, 8(13): 20706-20718.
doi: 10.18632/oncotarget.14982 pmid: 28157701
[1] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[2] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[3] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[4] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[5] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[6] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[7] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[8] 李思,翟逸舟,陆玉婷,王富军,赵健. 一种用于肿瘤药物治疗的新型人源性穿膜肽的优化及其应用 *[J]. 中国生物工程杂志, 2018, 38(7): 40-49.
[9] 谭杨,刘胜,罗凤玲,章晓联. 结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *[J]. 中国生物工程杂志, 2018, 38(5): 1-9.
[10] 郝瑾,朱子鑫,吕小岩,周钦. JNK通路对M2巨噬细胞极化及其肿瘤效应的影响[J]. 中国生物工程杂志, 2018, 38(4): 1-7.
[11] 李敏, 吴日伟. 抗肿瘤药物市场概述[J]. 中国生物工程杂志, 2017, 37(4): 125-133.
[12] 刘立平, 张纯, 殷爽, 王祺, 张耀, 余蓉, 刘永东, 苏志国. 白蛋白结合肽-多柔比星耦合物的设计、制备、表征及初步评价[J]. 中国生物工程杂志, 2017, 37(4): 68-75.
[13] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[14] 陈文杰, 汪建样, 殷明, 殷嫦嫦. 人脐带间充质干细胞抗肿瘤机制的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 78-82.
[15] 雷良欢, 黄同龙, 魏慧, 廖继燕, 吴雨婧, 周偲, 夏立秋, 张友明. 叶柄粘球菌STXZ77的分离鉴定及抗肿瘤活性[J]. 中国生物工程杂志, 2016, 36(11): 7-15.