Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 126-139    DOI: 10.13523/j.cb.2209044
生物质资源     
海蛎壳生物质资源再利用的研究进展*
张琪1,张益霞1,**(),薛彩丽1,张辉1,张云鹏1,杨大鹏2,**()
1 太原理工大学生物医学工程学院 太原 030024
2 泉州师范学院化工与材料学院 泉州 362000
Research Progress on Reuse of Biomass Resource of Oyster Shells
ZHANG Qi1,ZHANG Yi-xia1,**(),XUE Cai-li1,ZHANG Hui1,ZHANG Yun-peng1,YANG Da-peng2,**()
1 School of Biomedical Engineering, Taiyuan University Of Technology, Taiyuan 030024, China
2 School of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
 全文: PDF(1997 KB)   HTML
摘要:

海蛎是一种营养和医药价值较高的咸水双壳类动物,在世界各地被广泛养殖。海蛎壳副产品是一种天然生物质资源,由95%的碳酸钙和5%的有机基质组成。海蛎壳的多尺度、多层次“砖-泥”独特结构,使其具有良好的机械稳定性、生物相容性、可降解性和优异的吸附特性。首先,介绍了海蛎壳生物质的理化性质和天然独特微纳米结构,总结了海蛎壳在农业、工业、生物医药领域的研究现状,详细阐述了其在污水治理、土壤改良、天然抗菌剂(食品工业和生物医药)、骨组织工程、医药原料、生物填料、工业催化剂及分散载体、建筑工业填料、功能化涂料等领域的研究现状。其次,概述了利用生物转化技术将海蛎壳转化为生物能源、新型生物质材料等方面的研究进展。最后,展望了海蛎壳生物质资源及其衍生物未来在工业、农业、医药领域的潜在应用。

关键词: 海蛎壳生物资源水体修复土壤改良生物质抗菌工业生态原料    
Abstract:

Oysters are saltwater bivalves with high nutritional and medicinal value that are cultivated widely around the world. Oyster shell is a unique natural biomaterial composed of 95% calcium carbonate and 5% organic polymer material. Its unique multi-scale and multi-level “brick-mud”microstructure is similar to human hard tissues, which endows its good mechanical stability, biocompatibility, degradability, and excellent adsorption properties. Herein, this paper systematically introduces and discusses the physicochemical and highly ordered hierarchical natural unique calcium carbonate micro nano structure of oyster shell, followed by a summary of its applications in agriculture, industry and biology. Specially, we elaborate the applications of oyster shells in sewage processing, soil improvement, natural antibacterial agents (food industry and biomedicine), bone tissue engineering, medical uses, biological filling, catalysts and dispersive carriers in diesel industry, concrete fillers in construction industry, and functional coating additives,and introduce the advances in using the bioconversion technology to convert oyster shells into bioenergy, new biomass materials and other applications. In addition, this review also discusses the potential applications of oyster shells in industry, agriculture and medicine in the near future.

Key words: Biological    resources    of    oyster    shells    Water    body    restoration    Soil    improvement    Biomass    antibacterial    Industrial    ecological    raw    materials
收稿日期: 2022-09-16 出版日期: 2022-12-07
ZTFLH:  Q819  
基金资助: *山西省青年科技研究基金(201901D211084)
通讯作者: **电子信箱:523481558@qq.com; yangdp@qztc.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张琪
张益霞
薛彩丽
张辉
张云鹏
杨大鹏

引用本文:

张琪, 张益霞, 薛彩丽, 张辉, 张云鹏, 杨大鹏. 海蛎壳生物质资源再利用的研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 126-139.

ZHANG Qi, ZHANG Yi-xia, XUE Cai-li, ZHANG Hui, ZHANG Yun-peng, YANG Da-peng. Research Progress on Reuse of Biomass Resource of Oyster Shells. China Biotechnology, 2022, 42(11): 126-139.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209044        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/126

产量/万吨 占比/% 排名
福建 201.259 38.5 第一
广东 113.916 21.8 第二
山东 86.987 16.6 第三
广西 65.928 12.6 第四
辽宁 27.390 5.2 第五
浙江 22.771 4.3
江苏 4.020 7.7
河北 0.15 0.03
总产量 522.421
表1  中国各省海蛎养殖产量[10]
图1  海蛎壳生物质资源应用领域
图2  海蛎壳的微观结构(a)[13]和“砖-泥”结构示意图(b)[14]
图3  渗透性海蛎壳砖的制备过程(编译自参考文献[25])
图4  壳聚糖对革兰氏阴性菌(a)和革兰氏阳性菌的作用模式(b)(编译自参考文献[54])
图5  天然海蛎壳SEM图像 [78]
[1] Bianchi M, Chopin F, Farme T, et al. FAO: The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization of the United Nations, 2014:1-230.
[2] Cheng S Z, Tu M L, Liu H X, et al. A novel heptapeptide derived from Crassostrea gigas shows anticoagulant activity by targeting for thrombin active domain. Food Chemistry, 2021, 334: 127507.
doi: 10.1016/j.foodchem.2020.127507
[3] Campbell M D, Hall S G. Hydrodynamic effects on oyster aquaculture systems: a review. Reviews in Aquaculture, 2019, 11(3): 896-906.
doi: 10.1111/raq.12271
[4] Fishery FAO Aquaculture , 2012. [2022-09-01]. http://www.fao.org/fishery/statistics/en .
[5] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴 2020. 北京: 中国农业出版社, 2020:27.
Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2020. Beijing: Chinese Agriculture Press, 2020:27.
[6] Águila-Almanza E, Hernández-Cocoletzi H, Rubio-Rosas E, et al. Recuperation and characterization of calcium carbonate from residual oyster and clamshells and their incorporation into a residential finish. Chemosphere, 2022, 288: 132550.
doi: 10.1016/j.chemosphere.2021.132550
[7] Silva T H, Mesquita-Guimarães J, Henriques B, et al. The potential use of oyster shell waste in new value-added by-product. Resources, 2019, 8(1): 13.
doi: 10.3390/resources8010013
[8] 李凤敏. 贝壳材料的结构特征和力学性能分析. 大连: 大连理工大学, 2005.
Li F M. The analysis of structural characteristics and properties of the shell. Dalian: DalianUniversity of Technology, 2005.
[9] Checa A G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Frontiers in Marine Science, 2018, 5: 353.
doi: 10.3389/fmars.2018.00353
[10] Peng D M, Zhang S C, Zhang H Z, et al. The oyster fishery in China: Trend, concerns and solutions. Marine Policy, 2021, 129: 104524.
doi: 10.1016/j.marpol.2021.104524
[11] 崔童. 贝壳的应用途径及相关材料的制备. 渔业研究, 2019, 41(4): 353-358.
Cui T. Application of shells and preparation of shell materials. Journal of Fisheries Research, 2019, 41(4): 353-358.
[12] Yao Z T, Xia M S, Li H Y, et al. Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Critical Reviews in Environmental Science and Technology, 2014, 44(22): 2502-2530.
doi: 10.1080/10643389.2013.829763
[13] Liu X, Zhan G W, Wu J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173.
[14] Song F, Soh A K, Bai Y L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 2003, 24(20): 3623-3631.
pmid: 12809793
[15] Chai W S, Cheun J Y, Kumar P S, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 2021, 296: 126589.
doi: 10.1016/j.jclepro.2021.126589
[16] Tamjidi S, Ameri A. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environmental Science and Pollution Research International, 2020, 27(25): 31105-31119.
doi: 10.1007/s11356-020-09655-7 pmid: 32533472
[17] Tao H C, Zhang H R, Li J B, et al. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresource Technology, 2015, 192: 611-617.
doi: 10.1016/j.biortech.2015.06.006
[18] Qi X, Yin H, Zhu M H, et al. MgO-loaded nitrogen and phosphorus self-doped biochar: high-efficient adsorption of aquatic Cu2+, Cd2+, and Pb2+ and its remediation efficiency on heavy metal contaminated soil. Chemosphere, 2022, 294: 133733.
doi: 10.1016/j.chemosphere.2022.133733
[19] Wu Q, Chen J, Clark M, et al. Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 2014, 311: 264-272.
doi: 10.1016/j.apsusc.2014.05.054
[20] Qi X L, Tong X Q, Pan W H, et al. Recent advances in polysaccharide-based adsorbents for wastewater treatment. Journal of Cleaner Production, 2021, 315: 128221.
doi: 10.1016/j.jclepro.2021.128221
[21] Xiang Y J, Yang X, Xu Z Y, et al. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: effects and mechanisms. Science of the Total Environment, 2020, 709: 136079.
doi: 10.1016/j.scitotenv.2019.136079
[22] Zhao B L, Zhang J E, Yan W B, et al. Removal of cadmium from aqueous solution using waste shells of golden apple snail. Desalination and Water Treatment, 2016, 57(50): 23987-24003.
doi: 10.1080/19443994.2016.1140078
[23] Tamjidi S, Esmaeili H. Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr(III) removal from water. Chemical Engineering & Technology, 2019, 42(3): 607-616.
[24] Yen H Y, Li J Y. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. Journal of Environmental Management, 2015, 161: 344-349.
doi: S0301-4797(15)30169-9 pmid: 26203873
[25] Xia C H, Zhang X Y, Xia L H. Heavy metal ion adsorption by permeable oyster shell bricks. Construction and Building Materials, 2021, 275: 122128.
doi: 10.1016/j.conbuildmat.2020.122128
[26] Esmaeili H, Tamjidi S, Abed M. Removal of Cu(II), Co(II) and Pb(II) from synthetic and real wastewater using calcified Solamen Vaillanti snail shell. Desalination and Water Treatment, 2020, 174: 324-335.
doi: 10.5004/dwt.2020.24880
[27] Shankar P, Gomathi T, Vijayalakshmi K, et al. Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer. International Journal of Biological Macromolecules, 2014, 67: 180-188.
doi: 10.1016/j.ijbiomac.2014.03.010 pmid: 24680901
[28] Ahmadi M, Rahmani H, Ramavandi B, et al. Removal of nitrate from aqueous solution using activated carbon modified with Fenton reagents. Desalination and Water Treatment, 2017, 76: 265-275.
doi: 10.5004/dwt.2017.20705
[29] Teimouri A, Esmaeili H, Foroutan R, et al. Adsorptive performance of calcined Cardita bicolor for attenuating Hg(II) and As(III) from synthetic and real wastewaters. Korean Journal of Chemical Engineering, 2018, 35(2): 479-488.
doi: 10.1007/s11814-017-0311-y
[30] Khirul M A, Kim B G, Cho D, et al. Effect of oyster shell powder on nitrogen releases from contaminated marine sediment. Environmental Engineering Research, 2020, 25(2): 230-237.
doi: 10.4491/eer.2018.395
[31] Zhan J X, Lu J S, Wang D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Reviews in Aquaculture, 2022, 14(1): 477-488.
doi: 10.1111/raq.12610
[32] van H T, Nguyen L H, Nguyen V D, et al. Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: batch and column studies. Journal of Environmental Management, 2019, 241: 535-548.
doi: S0301-4797(18)31089-2 pmid: 30318157
[33] He C X, Qu J H, Yu Z H, et al. Preparation of micro-nano material composed of oyster shell/Fe3O4 nanoparticles/humic acid and its application in selective removal of Hg(II). Nanomaterials (Basel, Switzerland), 2019, 9(7): 953.
[34] 李昂, 王旭, 范洪黎. 4种土壤调理剂改良红壤铝毒害的效果研究. 中国土壤与肥料, 2014(4): 7-11.
Li A, Wang X, Fan H L. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil. Soil and Fertilizer Sciences in China, 2014(4): 7-11.
[35] 王爱英, 赵啸林, 孙玲丽, 等. 沼渣土壤调理剂对胶东地区酸性土壤改良效果研究. 中国沼气, 2019(4): 98-102.
Wang A Y, Zhao X L, Sun L L, et al. Effect of soil conditioner of biogas slurry on acid soil improvement in Jiaodong area. China Biogas, 2019(4): 98-102.
[36] Wan S Z, Liu Z F, Chen Y Q, et al. Effects of lime application and understory removal on soil microbial communities in subtropical Eucalyptus L’Hér. plantations. Forests, 2019, 10(4): 338.
[37] Lu M Y, Shi X S, Feng Q, et al. Modification of oyster shell powder by humic acid for ammonium removal from aqueous solutions and nutrient retention in soil. Journal of Environmental Chemical Engineering, 2021, 9(6): 106708.
doi: 10.1016/j.jece.2021.106708
[38] Ayilara M, Olanrewaju O, Babalola O, et al. Waste management through composting: challenges and potentials. Sustainability, 2020, 12(11): 4456.
doi: 10.3390/su12114456
[39] Lee Y H, Islam S M A, Hong S J, et al. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Bioscience, Biotechnology, and Biochemistry, 2010, 74(8): 1517-1521.
doi: 10.1271/bbb.90642
[40] Awad Y M, Lee S S, Kim K H, et al. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: effects of biochar, oyster shells, and polymers. Chemosphere, 2018, 198: 40-48.
doi: S0045-6535(18)30042-0 pmid: 29421756
[41] Wang Y T, Cai Z Q, Sheng S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Science of the Total Environment, 2020, 701: 134736.
doi: 10.1016/j.scitotenv.2019.134736
[42] Alabaraoye E, Achilonu M, Hester R. Biopolymer (chitin) from various marine seashell wastes: isolation and characterization. Journal of Polymers and the Environment, 2018, 26(6): 2207-2218.
doi: 10.1007/s10924-017-1118-y
[43] Confederat L G, Tuchilus C G, Dragan M, et al. Preparation and antimicrobial activity of chitosan and its derivatives: a concise review. Molecules (Basel, Switzerland), 2021, 26(12): 3694.
doi: 10.3390/molecules26123694
[44] Perinelli D R, Fagioli L, Campana R, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 2018, 117: 8-20.
doi: S0928-0987(18)30061-7 pmid: 29408419
[45] Amankwaah C, Li J R, Lee J, et al. Antimicrobial activity of chitosan-based films enriched with green tea extracts on murine Norovirus, Escherichia coli, and Listeria innocua. International Journal of Food Science, 2020, 2020: 3941924.
[46] Wang Y G, Li B, Zhang X D, et al. Low molecular weight chitosan is an effective antifungal agent against Botryosphaeria sp. and preservative agent for pear (Pyrus) fruits. International Journal of Biological Macromolecules, 2017, 95: 1135-1143.
doi: 10.1016/j.ijbiomac.2016.10.105
[47] Karri V V S R, Kuppusamy G, Talluri S V, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. International Journal of Biological Macromolecules, 2016, 93: 1519-1529.
doi: S0141-8130(16)30449-4 pmid: 27180291
[48] Morais D S, Guedes R M, Lopes M A. Antimicrobial approaches for textiles: from research to market. Materials (Basel, Switzerland), 2016, 9(6): E498.
[49] Tsou C H, Wu C S, Hung W S, et al. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 2019, 160: 265-271.
doi: 10.1016/j.polymer.2018.11.048
[50] Sadeghi K, Park K, Seo J. Oyster shell disposal: potential as a novel ecofriendly antimicrobial agent for packaging: a mini review. Korean Journal of Packaging Science and Technology, 2019, 25(2): 57-62.
doi: 10.20909/kopast.2019.25.2.57
[51] Sato Y, Ishihara M, Nakamura S, et al. Preparation and application of bioshell calcium oxide (BiSCaO) nanoparticle-dispersions with bactericidal activity. Molecules (Basel, Switzerland), 2019, 24(18): 3415.
doi: 10.3390/molecules24183415
[52] Hou Y K, Shavandi A, Carne A, et al. Marine shells: potential opportunities for extraction of functional and health-promoting materials. Critical Reviews in Environmental Science and Technology, 2016, 46(11-12): 1047-1116.
doi: 10.1080/10643389.2016.1202669
[53] Chen Y C, Lin C L, Li C T, et al. Structural transformation of oyster, hard clam, and sea urchin shells after calcination and their antibacterial activity against foodborne microorganisms. Fisheries Science, 2015, 81(4): 787-794.
doi: 10.1007/s12562-015-0892-5
[54] Hu Z Y, Gänzle M G. Challenges and opportunities related to the use of chitosan as a food preservative. Journal of Applied Microbiology, 2019, 126(5): 1318-1331.
doi: 10.1111/jam.14131 pmid: 30325559
[55] Choi Y M, Whang J H, Kim J M, et al. The effect of oyster shell powder on the extension of the shelf-life of Kimchi. Food Control, 2006, 17(9): 695-699.
doi: 10.1016/j.foodcont.2005.04.005
[56] Kim Y S, Choi Y M, Noh D O, et al. The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chemistry, 2007, 103(1): 155-160.
doi: 10.1016/j.foodchem.2006.07.040
[57] Choi J S, Lee H J, Jin S K, et al. Effect of oyster shell calcium powder on the quality of restructured pork ham. Korean Journal for Food Science of Animal Resources, 2014, 34(3): 372-377.
doi: 10.5851/kosfa.2014.34.3.372
[58] Tongwanichniyom S, Kitjaruwankul S, Phornphisutthimas S. Production of biomaterials from seafood waste for application as vegetable wash disinfectant. Heliyon, 2022, 8(5): e09357.
doi: 10.1016/j.heliyon.2022.e09357
[59] Shang B Y, Wang S S, Lu L X, et al. Poultry eggshell-derived antimicrobial materials: current status and future perspectives. Journal of Environmental Management, 2022, 314: 115096.
doi: 10.1016/j.jenvman.2022.115096
[60] Chang L, Feng Y, Wang B Q, et al. Dual functional oyster shell-derived Ag/ZnO/CaCO3 nanocomposites with enhanced catalytic and antibacterial activities for water purification. RSC Advances, 2019, 9(70): 41336-41344.
doi: 10.1039/c9ra08960h
[61] Widakdo J, Chen T M, Lin M C, et al. Evaluation of the antibacterial activity of eco-friendly hybrid composites on the base of oyster shell powder modified by metal ions and LLDPE. Polymers, 2022, 14(15): 3001.
doi: 10.3390/polym14153001
[62] Fujita T. Osteoporosis: past, present and future. Osteoporosis International, 1997, 7 (Suppl 3): 6-9.
doi: 10.1007/BF03194335
[63] Fujita T, Fujii Y, Goto B, et al. Peripheral computed tomography (pQCT) detected short-term effect of AAACa (heated oyster shell with heated algal ingredient HAI): a double-blind comparison with CaCO3 and placebo. Journal of Bone and Mineral Metabolism, 2000, 18(4): 212-215.
pmid: 10874600
[64] Fujita T, Ohue M, Fujii Y, et al. The effect of active absorbable algal calcium (AAA Ca) with collagen and other matrix components on back and joint pain and skin impedance. Journal of Bone and Mineral Metabolism, 2002, 20(5): 298-302.
pmid: 12203036
[65] Fujita T, Ohgitani S, Nomura M. Fall of blood ionized calcium on watching a provocative TV program and its prevention by active absorbable algal calcium (AAA Ca). Journal of Bone and Mineral Metabolism, 1999, 17(2): 131-136.
pmid: 10340641
[66] Ciria-Recasens M, Blanch-Rubió J, Coll-Batet M, et al. Comparison of the effects of ossein-hydroxyapatite complex and calcium carbonate on bone metabolism in women with senile osteoporosis: a randomized, open-label, parallel-group, controlled, prospective study. Clinical Drug Investigation, 2011, 31(12): 817-824.
doi: 10.2165/11592930-000000000-00000 pmid: 22035462
[67] Pelayo I, Haya J, De la Cruz J J, et al. Raloxifene plus ossein-hydroxyapatite compound versus raloxifene plus calcium carbonate to control bone loss in postmenopausal women: a randomized trial. Menopause (New York), 2008, 15(6): 1132-1138.
[68] Farzadi A, Bakhshi F, Solati-Hashjin M, et al. Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceramics International, 2014, 40(4): 6021-6029.
doi: 10.1016/j.ceramint.2013.11.051
[69] Skwarek E, Janusz W, Sternik D. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3): 2027-2036.
pmid: 26224967
[70] Thian E S, Konishi T, Kawanobe Y, et al. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. Journal of Materials Science Materials in Medicine, 2013, 24(2): 437-445.
doi: 10.1007/s10856-012-4817-x
[71] Qiu Z Y, Noh I S, Zhang S M. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Frontiers of Materials Science, 2013, 7(1): 40-50.
doi: 10.1007/s11706-013-0193-9
[72] Hasegawa Y, Fuji T, Inoue T. Nacre extract prevents scopolamine-induced memory deficits in rodents. Asian Pacific Journal of Tropical Medicine, 2018, 11(3): 202.
doi: 10.4103/1995-7645.228434
[73] Tran N K S, Kwon J E, Kang S C, et al. Crassaostrea gigas oyster shell extract inhibits lipogenesis via suppression of serine palmitoyltransferase. Natural Product Communications, 2015, 10(2): 349-352.
pmid: 25920281
[74] Latire T, Legendre F, Bouyoucef M, et al. Shell extracts of the edible mussel and oyster induce an enhancement of the catabolic pathway of human skin fibroblasts, in vitro. Cytotechnology, 2017, 69(5): 815-829.
doi: 10.1007/s10616-017-0096-1 pmid: 28474214
[75] Chen Y, Jiang Y, Liao L Y, et al. Inhibition of 4NQO-induced oral carcinogenesis by dietary oyster shell calcium. Integrative Cancer Therapies, 2016, 15(1): 96-101.
doi: 10.1177/1534735415596572 pmid: 26293805
[76] Lyu W D, Jia H J, Deng C Z, et al. Zeolite-containing mixture supplementation ameliorated dextran sodium sulfate-induced colitis in mice by suppressing the inflammatory bowel disease pathway and improving apoptosis in colon mucosa. Nutrients, 2017, 9(5): 467.
doi: 10.3390/nu9050467
[77] 王红霞, 魏景景, 康洪昌, 等. 柴胡加龙骨牡蛎汤治疗消化心身疾病体会. 环球中医药, 2018, 11(1): 73-75.
Wang H X, Wei J J, Kang H C, et al. Experience in treating digestive psychosomatic diseases with Chaihu and Kegu Oyster decoction. Global Traditional Chinese Medicine, 2018, 11(1): 73-75.
[78] Yang Y, Yao Q Q, Pu X M, et al. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chemical Engineering Journal, 2011, 173(3): 837-845.
doi: 10.1016/j.cej.2011.07.029
[79] Luo W F, Zhang S Y, Lan Y W, et al. 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering. Materials Research Express, 2018, 5(4): 045403.
doi: 10.1088/2053-1591/aab916
[80] Feng X, Jiang S S, Zhang F, et al. Shell water-soluble matrix protein from oyster shells promoted proliferation, differentiation and mineralization of osteoblasts in vitro and vivo. International Journal of Biological Macromolecules, 2022, 201: 288-297.
doi: 10.1016/j.ijbiomac.2021.12.168 pmid: 34998879
[81] Yao Z T, Heng J Y Y, Lanceros-Méndez S, et al. Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. International Journal of Adhesion and Adhesives, 2017, 77: 58-62.
doi: 10.1016/j.ijadhadh.2017.04.005
[82] Fombuena V, Bernardi L, Fenollar O, et al. Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Materials & Design, 2014, 57: 168-174.
doi: 10.1016/j.matdes.2013.12.032
[83] Yao Z T, Chen T, Li H Y, et al. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials, 2013, 262: 212-217.
doi: 10.1016/j.jhazmat.2013.08.062 pmid: 24036146
[84] Bonnard M, Boury B, Parrot I. Key insights, tools, and future prospects on oyster shell end-of-life: a critical analysis of sustainable solutions. Environmental Science & Technology, 2020, 54(1): 26-38.
doi: 10.1021/acs.est.9b03736
[85] Jin H, Kolar P, Peretti S, et al. Effect of preparation conditions on structure and activity of sodium-impregnated oyster shell catalysts for transesterification. Catalysts, 2018, 8(7): 259.
doi: 10.3390/catal8070259
[86] Wang W D, Wang F S, Chang Y C, et al. Biomass chitosan-derived nitrogen-doped carbon modified with iron oxide for the catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. Molecular Catalysis, 2021, 499: 111293.
doi: 10.1016/j.mcat.2020.111293
[87] 盖广清, 王卓清. 水性贝壳粉涂料甲醛净化率的研究. 吉林建筑大学学报, 2020(1): 77-80, 86.
Gai G Q, Wang Z Q. Study on formaldehyde purification rate of waterborne shell powder coatings. Journal of Jilin Jianzhu University, 2020(1): 77-80, 86.
[88] Gai G Q, Bai L M. Study on the moisture absorption and release properties of waterborne diatom liquid interior wall coatings. J Jilin Jianzhu Univ, 2019, 36(1):58- 62.
[89] Her S, Park T, Zalnezhad E, et al. Synthesis and characterization of cement clinker using recycled pulverized oyster and scallop shell as limestone substitutes. Journal of Cleaner Production, 2021, 278: 123987-124000.
doi: 10.1016/j.jclepro.2020.123987
[90] Naqi A L, Siddique S, Kim H K, et al. Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Construction and Building Materials, 2020, 230: 116973-116981.
doi: 10.1016/j.conbuildmat.2019.116973
[91] Shi Z G, Zhang L, Yuan H R, et al. Oyster shells improve anaerobic dark fermentation performances of food waste: hydrogen production, acidification performances, and microbial community characteristics. Bioresource Technology, 2021, 335: 125268-125277.
doi: 10.1016/j.biortech.2021.125268
[92] Hirano Y, Ihara T, Gomi K, et al. Simulation-based evaluation of the effect of green roofs in office building districts on mitigating the urban heat island effect and reducing CO2 emissions. Sustainability, 2019, 11(7): 2055-2071.
doi: 10.3390/su11072055
[93] Susca T. Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 2019, 162: 106273.
doi: 10.1016/j.buildenv.2019.106273
[94] Yu L Q, Gan J P. Mitigation of eutrophication and hypoxia through oyster aquaculture: an ecosystem model evaluation off the Pearl River Estuary. Environmental Science & Technology, 2021, 55(8): 5506-5514.
doi: 10.1021/acs.est.0c06616
[95] Ulagesan S, Krishnan S, Nam T J, et al. A review of bioactive compounds in oyster shell and tissues. Frontiers in Bioengineering and Biotechnology, 2022, 10: 913839.
doi: 10.3389/fbioe.2022.913839
[96] Bersoza Hernández A, Brumbaugh R D, Frederick P, et al. Restoring the eastern oyster: how much progress has been made in 53 years? Frontiers in Ecology and the Environment, 2018, 16(8): 463-471.
doi: 10.1002/fee.1935
[97] Yang Y, Li P W, Jiao J, et al. Renewable sourced biodegradable mulches and their environment impact. Scientia Horticulturae, 2020, 268: 109375.
doi: 10.1016/j.scienta.2020.109375
[1] 刘嘉, 严宝飞, 张景正, 马宇霆, 田朝晖, 曾庆琪. 黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路的影响*[J]. 中国生物工程杂志, 2022, 42(11): 109-116.
[2] 吴绪军, 鲁雷震, 马里千, 颜素, 张雪英, 雍晓雨, 周俊. 厌氧反应器中颗粒污泥的培育及应用研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 140-154.
[3] 欧江涛, 栾筱琪, 卞云霞, 蒋启程, 孟玉锁, 董惠姿, 王资生. 河蟹螺原体非编码RNA及其毒力靶标的多组学系统挖掘*[J]. 中国生物工程杂志, 2022, 42(11): 163-178.
[4] 张晴, 王翰臣, 程卓, 王美娜, 李利强, 龙春林. 中国野生兰科植物资源与保护利用现状*[J]. 中国生物工程杂志, 2022, 42(11): 59-72.
[5] 贾明良, 方荷芳, 张本厚, 胡燕花, 周安佩, 李同建, 金洪光, 韩兴杰, 文锋. 三叶半夏种质资源扩繁及保存研究*[J]. 中国生物工程杂志, 2022, 42(11): 18-26.
[6] 胡洋, 张旭, 王欢, 单立鹏, 刘镭, 陈炯. 药用植物资源在水产动物疾病控制中的研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 43-58.
[7] 李超峰, 吴育萍, 李双双, 胥凤梅, 章心怡, 王伟中, 唐伯平. 向日葵籽壳黑色素的分离提取及生物活性研究*[J]. 中国生物工程杂志, 2022, 42(11): 88-98.
[8] 张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.
[9] 刘相致,程驰,赵悦,汪超俊,张颖,薛闯. 里氏木霉中纤维素酶的合成诱导及调控*[J]. 中国生物工程杂志, 2022, 42(10): 93-104.
[10] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[11] 毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[12] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[13] 金爽,杨运松,梁金花,杨晓瑞,黎晓彤,朱建良. 生物酶/γ-Al2O3小球催化氧化柴油脱硫性能研究[J]. 中国生物工程杂志, 2022, 42(10): 21-30.
[14] 武瑞君,魏巍,桑晓冬,王黎琦,张鑫,敖翼,范玲. 全球抗病毒药物研发进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 125-132.
[15] 贾倩,郑怀国,赵静娟. 跨国种企作物育种专利布局及对我国的启示*[J]. 中国生物工程杂志, 2022, 42(10): 112-124.