Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 21-30    DOI: 10.13523/j.cb.2206011
研究报告     
生物酶/γ-Al2O3小球催化氧化柴油脱硫性能研究
金爽,杨运松,梁金花,杨晓瑞,黎晓彤,朱建良*()
南京工业大学生物与制药工程学院 南京 211816
Study on the Performance of Oxidative Diesel Desulfurization Catalyzed by Bioenzyme/γ-Al2O3 Spheres
Shuang JIN,Yun-song YANG,Jin-hua LIANG,Xiao-rui YANG,Xiao-tong LI,Jian-liang ZHU*()
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(2462 KB)   HTML
摘要:

通过吸附法将生物酶负载在γ-Al2O3小球载体上,并对生物酶/γ-Al2O3及载体进行扫描电镜(SEM)、比表面积分析(BET)、傅里叶红外光谱(FT-IR)及圆二色谱(CD)表征。结果表明:生物酶被吸附在载体上。将制备的生物酶/γ-Al2O3催化真实柴油氧化脱硫,考察了反应温度、反应流速和酶溶液浓度对真实柴油脱硫效果的影响,并对脱硫效果进行定性及定量分析;进一步对脱硫工艺条件进行响应面设计优化,找出最优反应条件。实验结果显示:反应温度49℃、反应流速1.0 mL/min、酶溶液浓度15.5%(酶载量为28.13 g),得出的最优脱硫率为93.16%;最后考察了该固定化酶的重复使用性能,该催化剂使用7次活性无明显降低,表明该固定化酶催化氧化柴油脱硫效果显著,具有潜在的工艺应用价值。

关键词: 柴油固定化酶氧化脱硫响应面设计    
Abstract:

The bioenzymes were loaded on the γ-Al2O3 spherical carrier by adsorption method, and the bioenzymes/γ-Al2O3 and the carrier were characterized by scanning electron microscopy (SEM), specific surface area analysis (BET), Fourier infrared spectroscopy (FT-IR) and circular dichroism (CD). The results showed that the bioenzymes were adsorbed on the carriers. The prepared bioenzyme/γ-Al2O3 catalyzed oxidative desulfurization of real diesel fuel, and the effects of reaction temperature, reaction flow rate and enzyme solution concentration on the desulfurization effect of real diesel fuel were investigated, and qualitative and quantitative analyses of the desulfurization effect were performed; further response surface design optimization of the desulfurization process conditions was carried out to find out the optimal reaction conditions. The experimental results showed that the optimum desulfurization rate of 93.16% was derived from the reaction temperature of 49℃, reaction flow rate of 1.0 mL/min and enzyme solution concentration of 15.5% (enzyme loading of 28.13 g). Finally, the performance of the immobilized enzyme was investigated for repeated use, and the activity of the catalyst did not decrease significantly after seven uses, indicating that the immobilized enzyme is effective in catalyzing oxidative diesel desulfurization and has potential application value.

Key words: Diesel    Immobilized enzymes    Oxidation desulfurization    Responsive surface design
收稿日期: 2022-06-10 出版日期: 2022-11-04
ZTFLH:  Q819  
通讯作者: 朱建良     E-mail: jlzhu@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金爽
杨运松
梁金花
杨晓瑞
黎晓彤
朱建良

引用本文:

金爽,杨运松,梁金花,杨晓瑞,黎晓彤,朱建良. 生物酶/γ-Al2O3小球催化氧化柴油脱硫性能研究[J]. 中国生物工程杂志, 2022, 42(10): 21-30.

Shuang JIN,Yun-song YANG,Jin-hua LIANG,Xiao-rui YANG,Xiao-tong LI,Jian-liang ZHU. Study on the Performance of Oxidative Diesel Desulfurization Catalyzed by Bioenzyme/γ-Al2O3 Spheres. China Biotechnology, 2022, 42(10): 21-30.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2206011        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/21

噻吩类化合物类型 结构
噻吩
二苯并噻吩
苯并噻吩
4,6-二甲基二苯并噻吩
表1  柴油中主要噻吩类物质
图1  反应器装置示意图
图2  负载酶催化剂反应前后的FT-IR谱图
图3  载体固定化酶前后的SEM图
图4  载体固定化酶前后N2吸附(脱附)等温线
图5  载体固定化酶前后BJH孔径分布图
图6  酶蛋白CD分析图谱
图7  反应温度对柴油脱硫率的影响
图8  反应流速对真实柴油脱硫的影响
浸泡液浓度/% 酶载量/g
10 23.79
15 27.86
20 32.36
25 36.32
30 40.28
表2  不同酶溶液浸泡载体酶载量
图9  酶溶液浓度对真实柴油脱硫的影响
图10  硫酸根浓度标准曲线
编号 反应温度
/℃
反应流速
/(mL/min)
酶溶液浓度
/%
脱硫率
/%
1 50 1.20 10 77.47
2 60 0.80 15 48.76
3 50 1.00 15 92.43
4 40 1.20 15 65.88
5 50 1.00 15 91.78
6 40 0.80 15 64.15
7 60 1.00 20 51.56
8 40 1.00 20 61.48
9 50 0.80 20 80.03
10 50 1.20 20 81.75
11 40 1.00 10 58.95
12 60 1.00 10 45.99
13 60 1.20 15 50.18
14 50 1.00 15 90.86
15 50 1.00 15 92.86
16 50 1.00 15 91.05
17 50 0.80 10 79.51
表3  响应面实验设计及结果
来源 平方和 自由度 均方 F P
模型 4 684.53 9 520.50 255.53 <0.000 1
A 364.10 1 364.10 178.74 <0.000 1
B 1.00 1 1.00 0.49 0.505 9
C 20.80 1 20.80 10.21 0.015 2
AB 0.024 1 0.024 0.012 0.916 6
AC 2.31 1 2.31 1.13 0.322 2
BC 3.53 1 3.53 1.74 0.229 2
A2 3 757.77 1 3 757.77 1 844.78 <0.000 1
B2 92.19 1 92.19 45.26 0.000 3
C2 232.24 1 232.24 114.01 <0.000 1
残差 14.26 7 2.04
失拟误差 11.29 3 3.76 5.07 0.075 3
纯误差 2.97 4 0.74
总和 4 698.78 16
标准偏差=1.43 R2=0.9970
均值=72.04 校正后R2=9931
变异系数=1.98 预测R2=0.9606
误差平方和=185.31 信噪比=42.407
表4  响应面实验数据分析
图11  各因素对脱硫率影响水平三维曲面图
图12  真实柴油脱硫催化剂性能检验
[1] 刘锐宇. 生物柴油的研究现状及展望. 石化技术, 2022, 29(1): 186-187.
Liu R Y. Research status and prospect of biodiesel. Petrochemical Industry Technology, 2022, 29(1): 186-187.
[2] Li S Z, Mominou N, Wang Z W, et al. Ultra-deep desulfurization of gasoline with CuW/TiO2-GO through photocatalytic oxidation. Energy & Fuels, 2016, 30(2): 962-967.
[3] 吴美璇, 赵子宇, 李浩, 等. 不同工作条件对柴油机尾气污染物排放特性的影响综述. 土木与环境工程学报, 2022, 44(1): 197-206.
Wu M X, Zhao Z Y, Li H, et al. Influence of different working conditions on emission characteristics of pollutants in diesel engine exhaust: a review. Journal of Civil and Environmental Engineering, 2022, 44(1): 197-206.
[4] 朱全力, 赵旭涛, 赵振兴, 等. 加氢脱硫催化剂与反应机理的研究进展. 分子催化, 2006, 20(4): 372-383.
Zhu Q L, Zhao X T, Zhao Z X, et al. Research progress on hydrodesulfurization catalysts and reaction mechanism. Journal of Molecular Catalysis, 2006, 20(4): 372-383.
[5] 王涛, 余文卉, 李谭香凝, 等. 离子液体在萃取氧化脱硫中的应用与研究进展. 应用化工, 2020, 49(2): 452-457.
Wang T, Yu W H, Li T X N, et al. Application and research progress of extraction-oxidation desulfurization using ionic liquids. Applied Chemical Industry, 2020, 49(2): 452-457.
[6] 陈政利, 韩娜, 苏炜, 等. Co-β-SBA-15催化氧化脱硫性能研究. 现代化工, 2019, 39(5): 177-181.
Chen Z L, Han N, Su W, et al. Study on performance of Co-β-SBA-15 in catalytic oxidation desulfurization. Modern Chemical Industry, 2019, 39(5): 177-181.
[7] Jumina, Kurniawan Y S, Purwono B, et al. Science and technology progress on the desulfurization process of crude oil. Bulletin of the Korean Chemical Society, 2021, 42(8): 1066-1081.
doi: 10.1002/bkcs.12342
[8] 刘朋, 赵锐铭, 梁刚. 国内柴油加氢脱硫技术的影响因素分析. 齐鲁石油化工, 2020, 48(3): 265-270.
Liu P, Zhao R M, Liang G. Analysis on influencing factors for diesel hydrodesulfurization technology in domestic. Qilu Petrochemical Technology, 2020, 48(3): 265-270.
[9] 杨运松, 梁金花, 杨晓瑞, 等. 柴油生物酶催化氧化脱硫的研究进展. 中国生物工程杂志, 2021, 41(10): 109-115.
Yang Y S, Liang J H, Yang X R, et al. Research progress in oxidative desulfurization of diesel oil catalyzed by enzymes. China Biotechnology, 2021, 41(10): 109-115.
[10] Lateef S A, Ajumobi O O, Onaizi S A. Enzymatic desulfurization of crude oil and its fractions: a mini review on the recent progresses and challenges. Arabian Journal for Science and Engineering, 2019, 44(6): 5181-5193.
doi: 10.1007/s13369-019-03800-2
[11] Nassar H N, Abu Amr S S, El-Gendy N S. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environmental Science and Pollution Research International, 2021, 28(7): 8102-8116.
doi: 10.1007/s11356-020-11090-7
[12] Bhasarkar J, Borah A J, Goswami P, et al. Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. Bioresource Technology, 2015, 196: 88-98.
doi: 10.1016/j.biortech.2015.07.063 pmid: 26231128
[13] Habibi M H, Etemadifari Z, Emtiazi G, et al. Synergic effects of photocatalytic and enzymatic degradation of dibenzothiophene by titania nanolayer coated on glass and intracellular enzymes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2015, 45(12): 1759-1763.
doi: 10.1080/15533174.2013.871733
[14] Karimi A M, Sadeghi S, Salimi F. Biodesulphurization of thiophene as a sulphur model compound in crude oils by Pseudomonas aeruginosa supported on polyethylene. Ecological Chemistry and Engineering S, 2017, 24(3): 371-379.
doi: 10.1515/eces-2017-0024
[15] Juarez-Moreno K, Díaz de León J N, Zepeda T A, et al. Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115: 90-95.
doi: 10.1016/j.molcatb.2015.02.004
[16] Ayala M, Hernandez-Lopez E L, Perezgasga L, et al. Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 2012, 92(1): 245-249.
doi: 10.1016/j.fuel.2011.06.067
[17] Ryu K, Heo J, Yoo I. Removal of dibenzothiophene and its oxidized product in anhydrous water-immiscible organic solvents by immobilized cytochrome C. Biotechnology Letters, 2004, 24: 143-146.
doi: 10.1023/A:1013806830105
[1] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[2] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[3] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[4] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[5] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[6] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[7] 李丽娟, 马贵平, 赵林果. 固定化酶载体研究进展[J]. 中国生物工程杂志, 2015, 35(11): 105-113.
[8] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[9] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[10] 刘会影, 薛冬桦, 潘安龙, 徐洪章, 叶小金, 孙国英. 微生物油脂酯化工艺优化[J]. 中国生物工程杂志, 2013, 33(3): 92-98.
[11] 胡文军, 罗玮, 李汉广, 顾秋亚, 余晓斌. 产油微藻筛选和鉴定及其产油性能的研究[J]. 中国生物工程杂志, 2012, 32(12): 66-72.
[12] 李涛, 李爱芬, 桑敏, 吴洪, 尹顺吉, 张成武. 富油能源微藻的筛选及产油性能评价[J]. 中国生物工程杂志, 2011, 31(04): 98-105.
[13] 郑洪立 高振 黄和 纪晓俊 白跃华 李文琦. 响应面法优化自养小球藻产生物柴油油脂[J]. 中国生物工程杂志, 2010, 30(08): 106-111.
[14] 张齐 郑洪立 唐小红 尹继龙 高振 纪晓俊 李文琦 黄和. 基于模糊综合评价的产生物柴油微藻藻种筛选[J]. 中国生物工程杂志, 2010, 30(05): 69-75.
[15] 姜进举 苗凤萍 冯大伟 秦松. 微藻生物柴油技术的研究现状及展望[J]. 中国生物工程杂志, 2010, 30(02): 134-137.