Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 109-116    DOI: 10.13523/j.cb.2209026
生物质资源     
黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路的影响*
刘嘉1,严宝飞1,张景正1,马宇霆1,田朝晖2,曾庆琪1,**()
1 江苏卫生健康职业学院 南京 211800
2 恩施土家族苗族自治州中心医院 恩施 445000
Effect of Huangqin Decoction on NF-κB/NLRP3/Caspase-1 Signaling Pathway and Pyroptosis in Kidney of Diabetic Nephropathy Rats
LIU Jia1,YAN Bao-fei1,ZHANG Jing-zheng1,MA Yu-ting1,TIAN Zhao-hui2,ZENG Qing-qi1,**()
1 Jiangsu Health Vocational College, Nanjing 211800, China
2 The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
 全文: PDF(1331 KB)   HTML
摘要:

目的:研究黄芩汤对糖尿病肾病(diabetic nephropathy,DN)大鼠肾组织核因子κB(nuclear factor kappa-B,NF-κB)/NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)/胱天蛋白酶-1(cysteinyl aspartate specific proteinase-1,Caspase-1)细胞焦亡通路的影响。方法: 将SD大鼠随机分为空白组、模型组、厄贝沙坦组(27 mg/kg)和黄芩汤低、高剂量组(5 g/kg和20 g/kg),高脂饲料喂养6周联合一次性腹腔注射链脲佐菌素(35 mg/kg)诱导DN大鼠模型,每组9只。灌胃给药6周后检测大鼠血清空腹血糖(fasting blood glucose,FBG)、总胆固醇(total cholesterol,TC)、甘油三酯(triacylglycerol,TG)、尿蛋白(urine protein,UP)、尿素氮(blood urea nitrogen,BUN)、血肌酐(serum creatinine,Scr)、白介素-1β(interleukin 1β,IL-1β)和IL-18水平;HE染色和Masson染色观察大鼠肾脏病理变化;Western blot和免疫组化检测肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路相关蛋白及阳性细胞表达。结果: 与空白组比较,模型组大鼠FBG、TC、TG、UP、BUN、Scr、IL-1β和IL-18水平明显升高(P<0.01);肾脏出现肾小球体积增大及基底膜增厚,肾小管管腔扩张,炎性浸润及纤维化明显等病理变化;肾脏组织NF-κB的磷酸化水平,以及NLRP3、凋亡相关斑点样蛋白(apoptosis-associated speck-like protein containing a CARD,ASC)、Caspase-1、IL-1β和消皮素D(gasdermin D,GSDMD)的蛋白质表达明显升高(P<0.01);肾脏组织NLRP3和GSDMD阳性细胞表达水平明显升高(P<0.01)。与模型组比较,黄芩汤组大鼠上述血糖、血脂、肾功能及炎性因子水平均得到明显改善(P<0.05,P<0.01);肾脏肾小球及肾小管结构趋于正常,炎性浸润及纤维化程度得到改善;肾脏组织NF-κB的磷酸化水平,以及NLRP3、ASC、Caspase-1、IL-1β和GSDMD的蛋白质表达水平明显降低(P<0.05,P<0.01);肾脏组织NLRP3和GSDMD阳性细胞表达明显降低(P<0.05,P<0.01)。结论: 黄芩汤对DN大鼠具有确切的疗效,机制可能与抑制NF-κB/NLRP3/Caspase-1细胞焦亡通路有关。

关键词: 黄芩汤糖尿病肾病细胞焦亡核因子κBNOD样受体热蛋白结构域相关蛋白3胱天蛋白酶-1    
Abstract:

To study the effect of Huangqin Decoction on nuclear factor kappa B (NF-κB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/cysteinyl aspartate specific proteinase-1 (Caspase-1)-dependent pyroptosis pathway in diabetic nephropathy (DN) rat model. Methods: Rats were randomly divided into control group, model group, irbesartan group (27 mg/kg), and Huangqin Decoction low- and high-dose groups (5 g/kg and 20 g/kg), and the DN rat model was induced by high-fat diet for 6 weeks combined with a single intraperitoneal injection of streptozotocin (35 mg/kg). Serum fasting blood glucose (FBG), total cholesterol (TC), triacylglycerol (TG), urine protein (UP), blood urea nitrogen (BUN), serum creatinine (Scr), interleukin 1β (IL-1β) and IL-18 levels were measured after 6 weeks of gavage administration; renal pathological changes were observed by HE and Masson staining; renal NF-κB/NLRP3/Caspase-1/pyroptosis pathway-related proteins and positive cell expression were detected by Western blot and immunohistochemistry. Results: Compared with the control group, the levels of FBG, TC, TG, UP, BUN, Scr, IL-1β and IL-18 were significantly increased in the model group (P<0.01); the kidneys showed pathological changes such as increased glomerular volume and basement membrane thickening, tubular lumen expansion, inflammatory infiltration and fibrosis; the phosphorylation levels of NF-κB in kidney tissues and NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, IL-1β and gasdermin D (GSDMD) protein expression were significantly increasedc (P<0.01); NLRP3 and GSDMD positive cells expression in renal tissue were significantly increased P<0.01). Compared with the model group, the above-mentioned blood glucose, lipids, renal function and inflammatory factor levels were significantly improved in the Huangqin Decoction groups (P<0.05, P<0.01); renal glomerular and tubular structures were normalized, and the degree of inflammatory infiltration and fibrosis was improved; the phosphorylation levels of NF-κB in renal tissue as well as NLRP3, ASC, Caspase-1, IL-1β and GSDMD protein expressions were significantly reduced (P<0.05, P<0.01); renal tissue NLRP3 and GSDMD positive cells expression were significantly reduced (P<0.05, P<0.01). Conclusion: Huangqin Decoction exerts a definite effect on DN rats, at least partly, through inhibition of the NF-κB/NLRP3/Caspase-1-dependent pyroptosis signaling pathway.

Key words: Huangqin Decoction    Diabetic nephropathy    Pyroptosis    NF-κB    NLRP3    Caspase-1
收稿日期: 2022-09-13 出版日期: 2022-12-07
ZTFLH:  Q819  
基金资助: *江苏省高校“青蓝工程”优秀教学团队培养对象(苏教师[2020]42号);江苏省中医药科技发展计划(YB2020100)
通讯作者: **电子信箱:zengqq111@126.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘嘉
严宝飞
张景正
马宇霆
田朝晖
曾庆琪

引用本文:

刘嘉, 严宝飞, 张景正, 马宇霆, 田朝晖, 曾庆琪. 黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路的影响*[J]. 中国生物工程杂志, 2022, 42(11): 109-116.

LIU Jia, YAN Bao-fei, ZHANG Jing-zheng, MA Yu-ting, TIAN Zhao-hui, ZENG Qing-qi. Effect of Huangqin Decoction on NF-κB/NLRP3/Caspase-1 Signaling Pathway and Pyroptosis in Kidney of Diabetic Nephropathy Rats. China Biotechnology, 2022, 42(11): 109-116.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209026        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/109

图1  黄芩汤对糖尿病肾病大鼠生化指标的影响( x -± s,n=6)
图2  黄芩汤对糖尿病肾病大鼠IL-1β和IL-18水平的影响( x -± s,n=6)
图3  黄芩汤对糖尿病肾病大鼠肾脏病理的影响(HE染色和Masson染色,×20)
图4  黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路相关蛋白表达的影响( x -± s,n=6)
图5  黄芩汤对糖尿病肾病大鼠肾脏NLRP3和GSDMD阳性细胞表达的影响( x -± s,n=6)
[1] Valencia W M, Florez H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ (Clinical Research Ed), 2017, 356: i6505.
[2] Zhang L X, Long J Y, Jiang W S, et al. Trends in chronic kidney disease in China. The New England Journal of Medicine, 2016, 375(9): 905-906.
doi: 10.1056/NEJMc1602469 pmid: 27579659
[3] Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed Research International, 2021, 2021: 1497449.
[4] Tavafi M. Diabetic nephropathy and antioxidants. Journal of Nephropathology, 2013, 2(1): 20-27.
doi: 10.5812/nephropathol.9093 pmid: 24475422
[5] Lim A K H, Tesch G H. Inflammation in diabetic nephropathy. Mediators of Inflammation, 2012, 2012: 146154.
[6] Zuo Y, Chen L, Gu H P, et al. GSDMD-mediated pyroptosis: a critical mechanism of diabetic nephropathy. Expert Reviews in Molecular Medicine, 2021, 23: e23.
doi: 10.1017/erm.2021.27 pmid: 34955116
[7] Tian D L, Shi X X, Zhao Y M, et al. The effect of A1 adenosine receptor in diabetic megalin loss with caspase-1/IL18 signaling. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, 12: 1583-1596.
doi: 10.2147/DMSO.S215531
[8] 严宝飞, 袁鹏, 刘圣金, 等. 黄芩汤对非酒精性脂肪肝大鼠肠道菌群的影响. 中草药, 2022, 53(1): 162-175.
Yan B F, Yuan P, Liu S J, et al. Effects of Huangqin Decoction on gut microbiota in rats with nonalcoholic fatty liver disease. Chinese Traditional and Herbal Drugs, 2022, 53(1): 162-175.
[9] 曹敏, 薛俊, 董荞菁, 等. 黄芩汤联合二甲双胍治疗2型糖尿病疗效及对肠道菌群构成、胰岛素信号转导分子水平影响. 中华中医药学刊, 2019, 37(11): 2792-2795.
Cao M, Xue J, Dong Q J, et al. Effect of Huangqin Decoction and metformin on intestinal flora and insulin signal transduction molecular in diabetes. Chinese Archives of Traditional Chinese Medicine, 2019, 37(11): 2792-2795.
[10] 徐晓敏, 李姗姗, 卢芳. 基于肾脏代谢组学探讨黄芩汤对DN模型小鼠的调节作用. 时珍国医国药, 2022, 33(5): 1075-1080.
Xu X M, Li S S, Lu F. To investigate the regulatory effect of Huangqin Decoctien on DN model mice based on kidney metabolomics. Lishizhen Medicine and Materia Medica Research, 2022, 33(5): 1075-1080.
[11] 吴娜, 万治平, 韩玲, 等. 黄芩汤对溃疡性结肠炎小鼠NLRP3/caspase-1细胞焦亡通路的影响. 中国中药杂志, 2021, 46(5): 1191-1196.
Wu N, Wan Z P, Han L, et al. Effect of Huangqin Decoction on pyroptosis pathway of NLRP3/caspase-1 in mice with ulcerative colitis. China Journal of Chinese Materia Medica, 2021, 46(5): 1191-1196.
[12] 戴新新, 蔡红蝶, 宿树兰, 等. 地黄叶对糖尿病肾病大鼠肠道菌群的调节作用. 药学学报, 2017, 52(11): 1683-1691.
Dai X X, Cai H D, Su S L, et al. Regulatory effect of the leaves of Rehmannia glutinosa Libosch on intestinal microflora in diabetic nephropathy rats. Acta Pharmaceutica Sinica, 2017, 52(11): 1683-1691.
[13] 李启航, 陈文斌, 孙珑昱, 等. 常用糖尿病肾病动物模型研究概述. 中华内分泌代谢杂志, 2020, 36(3): 257-262.
Li Q H, Chen W B, Sun L Y, et al. An overview of animal models of diabetic nephropathy. Chinese Journal of Endocrinology and Metabolism, 2020, 36(3): 257-262.
[14] 严宝飞, 许晨新, 陈灵, 等. 基于TLR2/MyD88/NF-κB信号通路探讨黄芩汤对溃疡性结肠炎小鼠的治疗机制. 中药新药与临床药理, 2022, 33(6): 727-735.
Yan B F, Xu C X, Chen L, et al. Study on the therapeutic mechanism of Huangqin Decoction on mice with ulcerative colitis through TLR2/MyD88/NF-κB signaling pathway. Traditional Chinese Drug Research and Clinical Pharmacology, 2022, 33(6): 727-735.
[15] 宋瑞婧, 张欣欣, 高飞, 等. 加味升降散对糖尿病肾病大鼠TXNIP/NLRP3通路及足细胞焦亡的影响. 中药药理与临床, 2022, 38(4): 2-9.
Song R J, Zhang X X, Gao F, et al. Effects of Jiawei Shengjiangsan on TXNIP/NLRP 3 pathway and podocyte pyroptosis in rats with diabetic kidney disease. Pharmacology and Clinics of Chinese Materia Medica, 2022, 38(4): 2-9.
[16] 段金廒. 中药资源化学:理论基础与资源循环利用. 北京: 科学出版社, 2015.
Duan J N. Resources chemistry of Chinese medicinal materials:theoretical basis and resource recycling utilization. Beijing: Science Press, 2015.
[17] Shao Y X, Gong Q, Qi X M, et al. Paeoniflorin ameliorates macrophage infiltration and activation by inhibiting the TLR4 signaling pathway in diabetic nephropathy. Frontiers in Pharmacology, 2019, 10: 566.
doi: 10.3389/fphar.2019.00566
[18] Ma L Y, Wu F, Shao Q Q, et al. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway. Drug Design, Development and Therapy, 2021, 15: 3207-3221.
doi: 10.2147/DDDT.S319260 pmid: 34321869
[19] Zhang Q Q, Ye Q, Huang X H, et al. Revealing active components, action targets and molecular mechanism of Gandi capsule for treating diabetic nephropathy based on network pharmacology strategy. BMC Complementary Medicine and Therapies, 2020, 20(1): 362.
doi: 10.1186/s12906-020-03155-4 pmid: 33228635
[20] Zheng Z C, Zhu W, Lei L, et al. Wogonin ameliorates renal inflammation and fibrosis by inhibiting NF-κB and TGF-β1/Smad 3 signaling pathways in diabetic nephropathy. Drug Design, Development and Therapy, 2020, 14: 4135-4148.
doi: 10.2147/DDDT.S274256
[21] Huang Y, Liu W H, Liu J F, et al. Association of urinary sodium excretion and diabetic kidney disease in patients with type 2 diabetes mellitus: a cross-sectional study. Frontiers in Endocrinology, 2021, 12: 772073.
doi: 10.3389/fendo.2021.772073
[22] Lin J W, Cheng A, Cheng K, et al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. International Journal of Molecular Sciences, 2020, 21(19): 7057.
doi: 10.3390/ijms21197057
[23] Shahzad K, Bock F, Dong W, et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney International, 2015, 87(1): 74-84.
doi: 10.1038/ki.2014.271 pmid: 25075770
[24] Zhang C P, Zhao C Q, Chen X Y, et al. Induction of ASC pyroptosis requires gasdermin D or caspase-1/11-dependent mediators and IFNβ from pyroptotic macrophages. Cell Death & Disease, 2020, 11: 470.
[25] Aizawa E, Karasawa T, Watanabe S, et al. GSDME-dependent incomplete pyroptosis permits selective IL-1α release under caspase-1 inhibition. iScience, 2020, 23(5): 101070.
doi: 10.1016/j.isci.2020.101070
[26] Navarro-González J F, Mora-Fernández C, de Fuentes M M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Reviews Nephrology, 2011, 7(6): 327-340.
doi: 10.1038/nrneph.2011.51 pmid: 21537349
[27] Faure E, Equils O, Sieling P A, et al. Bacterial lipopolysaccharide activates NF-κB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells: differential expression of TLR-4 and TLR-2 in endothelial cells. Journal of Biological Chemistry, 2000, 275(15): 11058-11063.
doi: 10.1074/jbc.275.15.11058 pmid: 10753909
[28] Ma Y H, Chen Y F, Li Y, et al. A probe into the intervention mechanism of Yiqi Huayu Jiedu Decoction on TLR4/NLRP 3 signal pathway in lipopolysaccharide-induced acute respiratory distress syndrome (ARDS) rats. Evidence-based Complementary and Alternative Medicine, 2022, 2022: 3051797.
[29] Samra Y A, Said H S, Elsherbiny N M, et al. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sciences, 2016, 157: 187-199.
doi: S0024-3205(16)30348-4 pmid: 27266851
[1] 吴绪军, 鲁雷震, 马里千, 颜素, 张雪英, 雍晓雨, 周俊. 厌氧反应器中颗粒污泥的培育及应用研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 140-154.
[2] 欧江涛, 栾筱琪, 卞云霞, 蒋启程, 孟玉锁, 董惠姿, 王资生. 河蟹螺原体非编码RNA及其毒力靶标的多组学系统挖掘*[J]. 中国生物工程杂志, 2022, 42(11): 163-178.
[3] 张晴, 王翰臣, 程卓, 王美娜, 李利强, 龙春林. 中国野生兰科植物资源与保护利用现状*[J]. 中国生物工程杂志, 2022, 42(11): 59-72.
[4] 张琪, 张益霞, 薛彩丽, 张辉, 张云鹏, 杨大鹏. 海蛎壳生物质资源再利用的研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 126-139.
[5] 贾明良, 方荷芳, 张本厚, 胡燕花, 周安佩, 李同建, 金洪光, 韩兴杰, 文锋. 三叶半夏种质资源扩繁及保存研究*[J]. 中国生物工程杂志, 2022, 42(11): 18-26.
[6] 胡洋, 张旭, 王欢, 单立鹏, 刘镭, 陈炯. 药用植物资源在水产动物疾病控制中的研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 43-58.
[7] 李超峰, 吴育萍, 李双双, 胥凤梅, 章心怡, 王伟中, 唐伯平. 向日葵籽壳黑色素的分离提取及生物活性研究*[J]. 中国生物工程杂志, 2022, 42(11): 88-98.
[8] 张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.
[9] 刘相致,程驰,赵悦,汪超俊,张颖,薛闯. 里氏木霉中纤维素酶的合成诱导及调控*[J]. 中国生物工程杂志, 2022, 42(10): 93-104.
[10] 李慧敏,贾斌,李霞,刘夺. 合成芳香族化合物的酵母底盘改造策略*[J]. 中国生物工程杂志, 2022, 42(10): 80-92.
[11] 毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[12] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[13] 金爽,杨运松,梁金花,杨晓瑞,黎晓彤,朱建良. 生物酶/γ-Al2O3小球催化氧化柴油脱硫性能研究[J]. 中国生物工程杂志, 2022, 42(10): 21-30.
[14] 武瑞君,魏巍,桑晓冬,王黎琦,张鑫,敖翼,范玲. 全球抗病毒药物研发进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 125-132.
[15] 贾倩,郑怀国,赵静娟. 跨国种企作物育种专利布局及对我国的启示*[J]. 中国生物工程杂志, 2022, 42(10): 112-124.