Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 88-98    DOI: 10.13523/j.cb.2209040
生物质资源     
向日葵籽壳黑色素的分离提取及生物活性研究*
李超峰1,2,吴育萍1,李双双1,胥凤梅1,章心怡1,王伟中1,2,唐伯平1,2,**()
1 盐城师范学院湿地学院 盐城 224007
2 盐城师范学院 江苏省滩涂生物资源与环境保护重点实验室 盐城 224007
Isolation and Biological Activity of Melanin from Sunflower Seed Shell
LI Chao-feng1,2,WU Yu-ping1,LI Shuang-shuang1,XU Feng-mei1,ZHANG Xin-yi1,WANG Wei-zhong1,2,TANG Bo-ping1,2,**()
1 School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
2 Jiangsu Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224007, China
 全文: PDF(1937 KB)   HTML
摘要:

目的:天然黑色素安全性高,兼具多种生物活性,深受消费者青睐,发展前景十分广阔。研究向日葵籽壳黑色素制备条件,以及抗氧化和吸附重金属生物活性,为其进一步应用提供理论基础。方法: 采用热碱提取、酸水解、有机溶剂洗涤和反复沉淀法,结合单因素与响应面分析法实现了黑色素的高效制备,利用氯化硝基四氮唑蓝还原法、分光光度法和静态吸附法进行抗氧化活性和吸附活性测定。结果: 成功制备了向日葵籽壳黑色素。提取结果表明最优工艺为氢氧化钠浓度0.11 mol/L、提取温度75.19℃、提取时间181.16 min、料液比为15.77∶1,向日葵籽壳黑色素得率为2.95%,与预测值相近,说明模型拟合良好,该优化工艺准确可行。抗氧化活性测定结果表明,向日葵籽壳黑色素清除超氧阴离子自由基、DPPH自由基的能力和还原力都高于合成型黑色素。吸附活性测定结果表明,向日葵籽壳黑色素对Pb2+、Cu2+和Cr3+的吸附效率高于合成型黑色素。结论: 与其合成型黑色素相比,天然黑色素既可作为着色剂,又兼抗氧化剂和吸附剂,且不亚于合成型黑色素的效果,可用于代替合成型黑色素开发的重要候选。

关键词: 向日葵籽壳黑色素分离提取抗氧化活性吸附作用    
Abstract:

Objective: Natural edible pigments with high safety and low toxicity usually possess various nutritional and pharmacological effects, and they have huge practical application value in the market. In this paper, the extraction condition, antioxidant activity, which included DPPH radical-scavenging activity, superoxide radical (O2-)-scavenging activity and reducing power, and metal chelating activity of melanin from sunflower seed shell were investigated in detail to provide theoretical basis for its future application. Methods: In this paper, the efficient preparation of melanin from sunflower seed shell was achieved using hot alkali extraction by single-factor experiments combined with response surface methodology (RSM), acid hydrolysis, washing with organic solvents, re-dissolution and re-precipitation. The antioxidant activity and adsorption activity were determined by nitrotetrazolium nlue chloride reduction method, spectrophotometry and static adsorption. Results: Melanin from sunflower seed shell was successfully prepared. The optimal conditions were determined as follows: NaOH concentration, 0.11 mol/L; liquid-to-solid ratio, 15.77∶1; extraction time, 181.16 min; and extraction temperature, 75.19℃. Under these conditions, the experimental yield of melanin was 2.95%, which was well matched with the value predicted by the developed model. The ability to scavenge DPPH radical, superoxide radical (O2-) and the reducing power of melanin from sunflower seed shell were stronger than those of synthetic melanin. Furthermore, the adsorption efficiency of melanin from sunflower seed shell to Pb2+, Cu2+ and Cr3+ were higher than that of synthetic melanin. Conclusion: Compared with synthetic melanin, natural melanin from sunflower seed shell could be used as colorant, antioxidant and adsorbent, and was more effective. Therefore, melanin from sunflower seed shell was a potential replacement of synthetic melanin.

Key words: Sunflower seed shell    Melanin    Extraction    Antioxidant activity    Absorption
收稿日期: 2022-09-15 出版日期: 2022-12-07
ZTFLH:  Q819  
基金资助: *国家自然科学基金面上项目(31672267);江苏省社会发展重点研发计划(BE2020673);江苏省自然科学基金青年科学基金(BK20150422)
通讯作者: **电子信箱:962664124@qq.com; boptang@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李超峰
吴育萍
李双双
胥凤梅
章心怡
王伟中
唐伯平

引用本文:

李超峰, 吴育萍, 李双双, 胥凤梅, 章心怡, 王伟中, 唐伯平. 向日葵籽壳黑色素的分离提取及生物活性研究*[J]. 中国生物工程杂志, 2022, 42(11): 88-98.

LI Chao-feng, WU Yu-ping, LI Shuang-shuang, XU Feng-mei, ZHANG Xin-yi, WANG Wei-zhong, TANG Bo-ping. Isolation and Biological Activity of Melanin from Sunflower Seed Shell. China Biotechnology, 2022, 42(11): 88-98.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209040        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/88

图1  NaOH浓度对黑色素提取的影响
图2  料液比对黑色素提取的影响
图3  提取温度对黑色素提取的影响
图4  提取时间对黑色素提取的影响
试验号 X1NaOH浓度/(mol/L) X2温度/℃ X3时间/h X4料液比 得率/%
1 0.1 60 2 15∶1 2.18±0.02
2 0.1 75 2 10∶1 2.18±0.03
3 0.1 75 4 20∶1 2.37±0.05
4 0.1 75 3 15∶1 2.98±0.02
5 0.2 60 3 15∶1 2.42±0.03
6 0.1 75 3 15∶1 2.96±0.04
7 0.2 75 3 10∶1 2.32±0.02
8 0.1 90 2 15∶1 2.30±0.03
9 0.0 75 3 10∶1 2.18±0.03
10 0.0 75 2 15∶1 2.26±0.01
11 0.2 75 2 15∶1 2.25±0.02
12 0.2 90 3 15∶1 2.32±0.02
13 0.1 75 2 20∶1 2.35±0.02
14 0.1 60 3 20∶1 2.41±0.03
15 0.1 75 4 10∶1 2.21±0.02
16 0.0 60 3 15∶1 2.09±0.01
17 0.2 75 4 15∶1 2.47±0.01
18 0.1 75 3 15∶1 2.95±0.02
19 0.1 90 3 20∶1 2.41±0.01
20 0.1 75 3 15∶1 2.94±0.02
21 0.2 75 3 20∶1 2.55±0.02
22 0.0 90 3 15∶1 2.32±0.02
23 0.0 75 3 20∶1 2.33±0.01
24 0.1 90 4 15∶1 2.26±0.01
25 0.1 75 3 15∶1 2.97±0.00
26 0.0 75 4 15∶1 2.10±0.03
27 0.1 90 3 10∶1 2.23±0.01
28 0.1 60 4 15∶1 2.26±0.02
29 0.1 60 3 10∶1 2.22±0.02
表1  Box-Behnken试验设计方案与结果
变异来源 平方和 自由度 均方 F P 显著性
模型 2.14 14 0.15 451.00 <0.000 1 **
X1 0.092 1 0.092 271.27 <0.000 1 **
X2 5.633×10-3 1 5.633×10-3 16.63 0.001 1 **
X3 1.875×10-3 1 1.875×10-3 5.54 0.033 8 *
X4 0.097 1 0.097 286.99 <0.000 1 **
X1X2 0.027 1 0.027 80.38 <0.000 1 **
X1X3 0.036 1 0.036 106.59 <0.000 1 **
X1X4 1.600×10-3 1 1.600×10-3 4.72 0.047 4 *
X2X3 3.600×10-3 1 3.600×10-3 10.63 0.005 7 **
X2X4 2.500×10-5 1 2.500×10-3 0.074 0.789 8
X3X4 2.500×10-5 1 2.500×10-3 0.074 0.789 8
X 1 2 0.66 1 0.66 1 961.13 <0.000 1 **
X 2 2 0.77 1 0.77 2 263.04 <0.000 1 **
X 3 2 0.90 1 0.90 2 657.41 <0.000 1 **
X 4 2 0.59 1 0.59 1 738.04 <0.000 1 **
残差 4.742×10-3 14 3.387×10-4
失拟项 3.742×10-3 10 3.742×10-4 1.50 0.371 4
纯误差 1.000×10-3 4 2.500×10-4
总误差 2.14 28
表2  回归模型的方差分析及回归系数的显著性检验
图5  各因素交互作用对黑色素得率影响的响应曲面
序号 分析 结果
1 颜色 黑色
2 不溶
3 盐酸溶液 不溶
4
甲醇、乙醇、氯仿、乙酸乙酯、石油醚、
正丁醇、丙酮等有机溶剂
不溶
5
氨水、NaOH、KOH、NaHCO3
Na2CO3等碱性溶液
溶解
6 H2O2、NaOCl、KMnO4、K2Cr2O7溶液 脱色
7 FeCl3溶液 棕色絮状物
表3  向日葵籽壳黑色素的理化性质
图6  向日葵籽壳黑色素的紫外-可见光谱
图7  向日葵籽壳黑色素对DPPH自由基的清除效果
图8  向日葵籽壳黑色素对超氧阴离子自由基的清除效果
图9  向日葵籽壳黑色素的还原力
图10  向日葵籽壳黑色素对Pb2+、Cr3+和Cu2+的脱除效率
[1] Bonan S, Fedrizzi G, Menotta S, et al. Simultaneous determination of synthetic dyes in foodstuffs and beverages by high-performance liquid chromatography coupled with diode-array detector. Dyes and Pigments, 2013, 99(1): 36-40.
doi: 10.1016/j.dyepig.2013.03.029
[2] 孙长颢. 营养与食品卫生学. 8版. 北京: 人民卫生出版社, 2017.
Sun C H. Nutrition and food hygiene. 8th. Beijing: People’s Medical Publishing House, 2017.
[3] Rodríguez-Mena A, Ochoa-Martínez L A, González-Herrera S M, et al. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry, 2023, 398: 133908.
doi: 10.1016/j.foodchem.2022.133908
[4] Nitteranon V, Kittiwongwattana C, Vuttipongchaikij S, et al. Evaluations of the mutagenicity of a pigment extract from bulb culture of Hippeastrum reticulatum. Food and Chemical Toxicology, 2014, 69: 237-243.
doi: 10.1016/j.fct.2014.04.007 pmid: 24751972
[5] Amin K A, Hameid H A II, Abd Elsttar A H. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 2010, 48(10): 2994-2999.
doi: 10.1016/j.fct.2010.07.039 pmid: 20678534
[6] Zhang H C, Zhan J X, Su K M, et al. A kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, λ-actinorhodin. Food Chemistry, 2006, 95(2): 186-192.
[7] Rodriguez-Amaya D B. Natural food pigments and colorants. Current Opinion in Food Science, 2016, 7: 20-26.
doi: 10.1016/j.cofs.2015.08.004
[8] Ghattavi K, Homaei A, Kamrani E, et al. Melanin pigment derived from marine organisms and its industrial applications. Dyes and Pigments, 2022, 201: 110214.
doi: 10.1016/j.dyepig.2022.110214
[9] Singh S, Nimse S B, Mathew D E, et al. Microbial melanin: recent advances in biosynthesis, extraction, characterization, and applications. Biotechnology Advances, 2021, 53: 107773.
doi: 10.1016/j.biotechadv.2021.107773
[10] Pralea I E, Moldovan R C, Petrache A M, et al. From extraction to advanced analytical methods: the challenges of melanin analysis. International Journal of Molecular Sciences, 2019, 20(16): 3943.
doi: 10.3390/ijms20163943
[11] Ito S, Kolbe L, Weets G, et al. Visible light accelerates the ultraviolet A-induced degradation of eumelanin and pheomelanin. Pigment Cell & Melanoma Research, 2019, 32(3): 441-447.
[12] Cruz-Hernández M, Velázquez-Herrera F D, Villa-Ruano N, et al. High-performance antifungal nanohybrid materials composed of melanin-clays. Applied Clay Science, 2021, 211: 106201.
doi: 10.1016/j.clay.2021.106201
[13] Lin T K, Man M Q, Abuabara K, et al. By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans. Evolutionary Applications, 2019, 12(10): 1960-1970.
doi: 10.1111/eva.12858
[14] Oh J J, Kim J Y, Kim Y J, et al. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere, 2021, 272: 129884.
doi: 10.1016/j.chemosphere.2021.129884
[15] 牟晓红. 向日葵籽壳生产木糖醇的工艺及方法. 化工技术与开发, 2008, 37(8): 44-46.
Mu X H. Preparation of xylitol with sunflower seed shell. Technology & Development of Chemical Industry, 2008, 37(8): 44-46.
[16] FAOSTAT. Crops and livestock products. [2022-09-15]. https://www.fao.org/faostat/en/#data/QCL .
[17] 中国产业信息网. 2020年全球及中国葵花籽油产量、消费量及葵花籽贸易情况分析. [2022-09-15]. https://www.markyubio.com/news/show.php?itemid=368 .
China Industrial Information Network. Analysis of global and China sunflower oil production, consumption and sunflower oil trade in 2020. [2022-09-15]. https://www.markyubio.com/news/show.php?itemid=368 .
[18] Hou R L, Liu X, Xiang K K, et al. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chemistry, 2019, 277: 533-542.
doi: 10.1016/j.foodchem.2018.11.002
[19] 王昭玉, 常明昌, 徐丽婧, 等. 灵芝子实体、菌丝体和孢子黑色素的结构表征与理化性质研究. 生物技术通报, 2021, 37(11): 81-91.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0659
Wang Z Y, Chang M C, Xu L J, et al. Structural characterization, physicochemical properties of melanin from fruiting body, hyphae and spores of Ganoderma lucidum. Biotechnology Bulletin, 2021, 37(11): 81-91.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0659
[20] Wu C C, Li H, Yin Z W, et al. Isolation, purification, and characterization of novel melanin from the submerged fermentation of Rhizobium radiobacter. Process Biochemistry, 2022, 121: 263-275.
doi: 10.1016/j.procbio.2022.07.009
[21] Manivasagan P, Venkatesan J, Senthilkumar K, et al. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. International Journal of Biological Macromolecules, 2013, 58: 263-274.
doi: 10.1016/j.ijbiomac.2013.04.041
[22] 项锦敏, 赵琼瑜, 远航, 等. 乌鳖黑色素理化性质及其抗氧化活性研究. 天然产物研究与开发, 2021, 33(3): 453-461.
Xiang J M, Zhao Q Y, Yuan H, et al. Physicochemical properties and antioxidant activities of melanin from Chinese soft-shelled turtle (Pelodiscus sinensis). Natural Product Research and Development, 2021, 33(3): 453-461.
[23] 邹宇, 尹冬梅, 胡文忠, 等. 黑木耳天然黑色素理化性质及其抗氧化活性的研究. 食品工业科技, 2013, 34(5): 118-121.
Zhou Y, Yi D M, Hu W Z, et al. Physicochemical properties and antioxidant activities of Auricularia auricula melanin. Science and Technology of Food Industry, 2013, 34(5): 118-121.
[24] 刘猛, 吴伟源, 章检明, 等. 核桃青皮甲醇提取物的抗氧化活性研究. 食品研究与开发, 2022, 43(13): 109-113.
Liu M, Wu W Y, Zhang J M, et al. Antioxidant activity of methanol extract from walnut green husks. Food Research and Development, 2022, 43(13): 109-113.
[25] 沈玥祺, 吴文标. 食品及其原料中的黑色素研究进展. 食品工业科技, 2022, 43(10): 405-416.
Shen Y Q, Wu W B. Progress of research on melanin in foods and their materials. Science and Technology of Food Industry, 2022, 43(10): 405-416.
[26] Pralea I E, Moldovan R C, Petrache A M, et al. From extraction to advanced analytical methods: the challenges of melanin analysis. International Journal of Molecular Sciences, 2019, 20: 3943.
doi: 10.3390/ijms20163943
[27] Shen N, Ren J N, Liu Y X, et al. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chemistry, 2023, 403: 134422.
doi: 10.1016/j.foodchem.2022.134422
[28] Hung Y C, Sava V M, Makan S Y, et al. Antioxidant activity of melanins derived from tea: comparison between different oxidative states. Food Chemistry, 2002, 78(2): 233-240.
doi: 10.1016/S0308-8146(01)00403-4
[29] 李玥彤, 隋怡, 郝晓伟, 等. 山茱萸叶多糖的理化性质和抗氧化活性. 西北农林科技大学学报(自然科学版), 2019, 47(8): 109-116, 143.
Li Y T, Sui Y, Hao X W, et al. Physicochemical properties and antioxidant activities of polysaccharide from Fructus corni leaves. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 109-116, 143.
[30] Lee J, Koo N, Min D B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 2004, 3(1): 21-33.
doi: 10.1111/j.1541-4337.2004.tb00058.x pmid: 33430557
[31] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性. 食品与发酵工业, 2021, 47(9): 16-24.
Feng Y Y, Zang Y Q. Study on the antioxidant activity of total flavonoids from three wheat brans in vitro. Food and Fermentation Industries, 2021, 47(9): 16-24.
[32] Wang X P, Han M, Dong H, et al. Protective effects of Sepia ink melanin on hepatic tissue in streptozotocin-induced diabetic mice. Journal of Ocean University of China, 2022, 21(5): 1362-1372.
doi: 10.1007/s11802-022-5018-y
[1] 杨子荣,杨璇,倪婷婷,潘聪,谭诗生,王姿. 可利霉素通过调控巨噬细胞极化影响黑色素瘤的增殖*[J]. 中国生物工程杂志, 2022, 42(7): 12-23.
[2] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[3] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[4] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[5] 汤禾静, 唐照勇, 刘隆兴, 张小梅, 王祎婷, 方廖琼. siRNA联合沉默MMP-9和FAK基因对小鼠黑色素瘤高转移细胞B16F10体外侵袭和迁移的影响[J]. 中国生物工程杂志, 2014, 34(9): 40-47.
[6] 赵晶, 吕慧, 贾依娜古丽·朱玛拜, 孙素荣. 骆驼蓬脂转移蛋白基因真核表达载体的构建及其体内外抗瘤效应的研究[J]. 中国生物工程杂志, 2014, 34(8): 7-13.
[7] 权美玉, 郭强, 张坤水, 方瑞, 李翠琳, 杜军. 稳定高表达和干扰Nodal基因黑色素瘤细胞株构建及EMT表型鉴定[J]. 中国生物工程杂志, 2014, 34(3): 1-8.
[8] 方瑞, 郭强, 杜军. 高表达Snail蛋白诱导黑色素瘤EMT细胞模型的构建及鉴定[J]. 中国生物工程杂志, 2013, 33(7): 1-7.
[9] 谢燕飞, 陈檬, 彭淑红, 汤啸天, 舒青龙, 左爱仁, 曹荣月. 重组卡介苗HSP65抑制小鼠移植黑色素瘤的初步药效学研究[J]. 中国生物工程杂志, 2012, 32(12): 47-51.
[10] 陈洁梅, 徐聪聪, 常磊, 刘永萍, 缪冰旋. 响应面分析法优化豆粕固态发酵工艺生产大豆抗氧化肽的研究[J]. 中国生物工程杂志, 2012, 32(12): 59-65.
[11] 张凤娟, 杨吉成, 盛伟华, 王家融, 缪竞诚. 腺病毒介导的人抑瘤素M基因对A375人黑色素瘤细胞的抑制作用[J]. 中国生物工程杂志, 2011, 31(11): 24-30.
[12] 陈小佳, 谢秋玲, 张玲, 洪岸, 林剑. bFGF与黑色素关系的研究进展[J]. 中国生物工程杂志, 2003, 23(7): 20-23.
[13] 曲殿波, 刘传暄, 马清钧. 肿瘤免疫治疗的一种新技术——肽脉冲[J]. 中国生物工程杂志, 1998, 18(4): 58-63.
[14] 王军志, 丁锡申. 国外基因治疗临床研究动向及市场展望[J]. 中国生物工程杂志, 1997, 17(3): 55-58,37.
[15] 王京杭. 白细胞介素-2的修饰[J]. 中国生物工程杂志, 1996, 16(3): 49-53.