Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 43-58    DOI: 10.13523/j.cb.2209023
生物遗传资源     
药用植物资源在水产动物疾病控制中的研究进展*
胡洋1,2,张旭1,2,3,王欢1,2,单立鹏1,2,刘镭1,2,陈炯1,2,**()
1 宁波大学 农产品质量安全危害因子与风险防控国家重点实验室 宁波 315211
2 宁波大学海洋学院 宁波 315832
3 无锡天香菊生物科技研究院有限公司 无锡 214200
Research Progress of Medicinal Plant Resources in Aquatic Animal Diseases Control
HU Yang1,2,ZHANG Xu1,2,3,WANG Huan1,2,SHAN Li-peng1,2,LIU Lei1,2,CHEN Jiong1,2,**()
1 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, Ningbo University, Ningbo 315211, China
2 School of Marine Sciences, Ningbo University, Ningbo 315832, China
3 Wuxi Tianxiangju Biotechnology Research Institute Co., LTD, Wuxi 214200, China
 全文: PDF(718 KB)   HTML
摘要:

随着生活水平的不断提高,人们对水产品的需求量日益增加,水产养殖业得到飞速发展。然而,各种寄生虫、细菌和病毒诱发的疾病给水产养殖业造成了巨大的经济损失,严重制约了水产养殖业的快速稳定发展。作为传统的防治手段,抗生素等化学合成药物常用于水产养殖过程。大量化学合成药物的滥用诱发了药物残留、耐药菌等环境污染问题,危害人类健康。因此,具有多种有效活性成分的中草药因其天然、安全、副作用小等原因,成为探索新型防控水产病害暴发手段的研究对象。当前,中草药常被用于调节水产动物的免疫力、生长速度和预防疾病暴发等。同时,中草药还可用于改善养殖环境,降低环境因子对水产动物的胁迫。然而,目前的研究主要集中在从中草药中获取防控疾病暴发的复合有效成分,存在药效不稳定、活性成分不明确等问题,无法满足生产高效、廉价、稳定防治剂的需求。论述了当前中草药在防控水产动物疾病暴发中的应用及其作用机制,揭示了对中草药活性分子作用机制研究的不足,强调了中草药作为一种更环保、更有效的水产养殖疾病防控手段进行应用的潜力,对其抗病机制的深入研究尤为重要。

关键词: 中草药活性成分抗生素免疫增强剂水产病害    
Abstract:

With the continuous improvement of living standards, people’s demand for aquatic products is increasing day by day, and the rapid development of the industry has become one of the fastest growing food production sectors worldwide. However, various diseases induced by parasites, bacteria and viruses have caused huge economic losses to aquaculture industry, which seriously restrict the rapid and stable development of the industry. As a traditional means of control, synthetic drugs such as antibiotics are often used in aquaculture processes. The abuse of a large number of chemosynthetic drugs induces drug residues, drug-resistant bacteria and other environmental pollution problems, endangering human health. Therefore, Chinese herbal medicine with a variety of effective active ingredients has become the research object for exploring new means of prevention and control of aquatic disease outbreak due to its natural, safe and small side effects. At present, Chinese herbal medicine is often used to regulate the immunity of aquatic animals, growth rate and prevent disease outbreaks. At the same time, it can also be used to improve the aquaculture environment and reduce the stress of environmental factors on aquatic animals. However, current studies mainly focus on obtaining compound active ingredients for disease outbreak prevention and control from Chinese herbal medicine, which are unstable in efficacy and unclear in active ingredients, and cannot meet the production needs of in-depth exploration of efficient, cheap and stable prevention and control agents. This paper discusses the application and mechanism of Chinese herbal medicine in prevention and control of aquatic animal disease outbreak, and reveals the insufficiency of the mechanism research on active molecules of Chinese herbal medicine. In conclusion, this paper highlights the potential of Chinese herbal medicine to be used as a more environmentally friendly and effective means of disease control and prevention in aquaculture, and the in-depth study of its resistance mechanism is particularly important.

Key words: Chinese herbal medicine    Active ingredients    Antibiotics    Immunostimulants    Aquatic diseases
收稿日期: 2022-09-12 出版日期: 2022-12-07
ZTFLH:  Q819  
基金资助: *浙江省自然科学基金(LQ22C190002);宁波市自然科学基金(2021J117);宁波市公益计划(2021S058)
通讯作者: **电子信箱:jchen1975@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡洋
张旭
王欢
单立鹏
刘镭
陈炯

引用本文:

胡洋, 张旭, 王欢, 单立鹏, 刘镭, 陈炯. 药用植物资源在水产动物疾病控制中的研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 43-58.

HU Yang, ZHANG Xu, WANG Huan, SHAN Li-peng, LIU Lei, CHEN Jiong. Research Progress of Medicinal Plant Resources in Aquatic Animal Diseases Control. China Biotechnology, 2022, 42(11): 43-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209023        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/43

名称 有效剂量 物种 杀灭寄生虫种类 参考文献
蛇床子 70 mg/L 金鱼 指环虫 [12]
鸡血藤 64.92 mg/L 金鱼 指环虫 [13]
鸦胆子 49.96 mg/L 金鱼 指环虫 [13]
七叶树种子 7.33 mg/L 金鱼 指环虫 [13]
银杏酚酸 1.70 mg/L 金鱼 指环虫 [14]
小果博落回 16 mg/L 金鱼 指环虫 [16]
盾叶薯蓣 17.0 mg/L 金鱼 指环虫 [17]
大蒜 12.5 mL/L 孔雀鱼 三代虫 [26]
生姜 200 ppt 孔雀鱼 三代虫 [27]
博落回 80 mg/L 金鱼 三代虫 [28]
奎宁 60 mg/kg 虹鳟 小瓜虫 [32]
白薇苷 2 mg/L 草鱼 隐核虫 [36]
白屈菜红碱 8 mg/L 金鱼 小瓜虫 [37]
补骨脂定 0.8 mg/L 金鱼 小瓜虫 [40]
厚朴酚 0.6 mg/L 金鱼 小瓜虫 [42]
印楝素 0.8 mg/L 斑马鱼 车轮虫 [43]
贯众 40 mg/L 大黄鱼 隐核虫 [45]
苦皮藤 200 mg/L 大黄鱼 隐核虫 [46]
表1  中草药的抗虫活性
名称 有效剂量 物种 功能 参考文献
黄芪多糖 100 mg/kg 提高抗病能力 [47]
丝兰 0.1% 尼罗罗非鱼 提高抗病水平 [48]
猪鬃草 2% 增强对不同致病菌的杀菌活性 [49]
薄荷 0.2% 虹鳟 提高对细菌性疾病的抵抗力 [50]
小檗碱 1 g/kg 尼罗罗非鱼 增强抗病能力 [51]
京尼平苷 100 mg/kg 提高对嗜水气单胞菌的抗性 [52]
迷迭香 10 g/kg 尼罗罗非鱼 增强抗病能力 [53]
葡萄籽 30 g/kg 提高对嗜水气单胞菌的抵抗 [54]
蒙古韭 40 mg/kg 乌鳢 提高对嗜水气单胞菌的抵抗 [55]
荷荷巴 2 g/kg 罗非鱼 改善血液学指标,增强抗嗜水气单胞菌能力 [56]
生姜 10 g/kg 虹鳟 提高抗氧化和免疫力,降低死亡率 [57]
山茶花 200 mg/kg 提高血液免疫指标 [58]
芦丁 50 μg/g 凡纳滨对虾 提高酚氧化酶活性,提高存活率 [59]
薄荷 1~5 g/kg 花鲈 提高血液免疫指标,增强对哈氏弧菌的抗性 [60]
大蒜 1.0 g/100 g 尼罗罗非鱼 有效预防链球菌感染 [61]
水葫芦 2.5%~5% 抗哈氏弧菌 [62]
辣木 40% 提高抗氧化和免疫反应,增强对嗜水气单胞菌的抗性 [63]
银杏叶 10 g/kg 改变免疫相关基因的表达,提高对嗜水气单胞菌抗性 [64]
辣木 40% 提高抗氧化和免疫反应 [65]
表2  中草药的抗菌活性
图1  抗虫活性单体化学结构式
中草药 活性物质 剂量 病毒原 物种 使用方式 参考文献
鸡冠花、萝卜 提取物 10 μg/mL、167 ng/g VHSV EPC细胞、比目鱼 浸泡/口服 [99]
黄芪多糖 12.5 mg/mL MSRV 草鱼卵巢细胞 浸泡 [100]
黄芪多糖 0.01% SVCV 斑马鱼 饲料添加 [101]
补骨脂 补骨脂甲素 5 mg/mL SVCV EPC细胞 浸泡 [102]
柴胡 柴胡皂苷D 6 mg/kg SVCV 斑马鱼、鲤 腹腔注射 [103]
牛蒡子苷元 1.6 mg/L SVCV EPC细胞 浸泡 [104]
棕榈酸 1 mmol/L SVCV 斑马鱼、斑马鱼成纤维细胞样ZF4细胞 浸泡 [105]
香菇 香菇多糖 100 μg/mL IHNV EPC细胞 浸泡 [106]
夏枯草 熊果酸 100 mg/mL IHNV 虹鳟 注射 [107]
漆树 黄酮类化合物 10 μg/mL IHNV/VHSV 牙鲆脾脏细胞/鲑胚胎细胞 浸泡 [108]
没食子 没食子儿茶素没
食子酸酯
20 μg/mL GCRV CIK细胞 浸泡 [110]
远志 甲醇提取物1、甲醇
提取物2
100 mg/L、5 mg/L GCRV CIK细胞 浸泡 [111]
厚朴 厚朴酚 1.5 μg/mL GCRV CIK细胞 浸泡 [112]
槲皮 槲皮素 100 μmol/L GCRV CIK细胞 浸泡 [113]
紫花地丁 水提取物 10 mg/mL GIV GS细胞 浸泡 [114]
金银花 木犀草素 500 μg/mL GIV GS细胞 浸泡 [115]
鳄嘴花 乙醇提取物 5 mg/mL KHV 锦鲤 口服 [116]
表3  中草药抗水生病毒活性
名称 活性物质 剂量 物种 参考文献
匍枝马尾藻 岩藻多糖 400 mg/kg 斑节对虾 [115]
杜氏藻 β-胡萝卜素 300 mg/kg 斑节对虾 [116]
双尾马尾藻和重尾马尾藻 水提物 750 mg/L 斑节对虾 [121]
紫齿龙、马尾鹿,堇孢草、黑水藓和旱莲 甲醇提取物 800 mg/kg 斑节对虾 [122]
半叶马尾藻粉 水提物 300 mg/L 凡纳滨对虾 [123]
江蓠 水提物 600 mg/L 凡纳滨对虾 [124]
角果木 水提物 500 mg/kg 斑节对虾 [125]
黄细心 乙醇提取物 10 mL/kg 斑节对虾 [126]
马缨丹和苦味叶下珠 水提物 150 mg/kg 斑节对虾 [127]
木橘 甲醇提取物 150 mg/kg 斑节对虾 [127]
马尾藻 岩藻多糖 400 mg/L 斑节对虾 [128]
紫锥菊和毛钩藤 水提物 4 g/kg 凡纳滨对虾 [129]
大花唐棣 乙酸乙酯和甲醇提取物 400 mg/kg 印度明对虾 [130]
番石榴 粉末 0.4% 斑节对虾 [131]
红凤菜 水提物 2 g/kg 凡纳滨对虾 [132]
紫背草 丙酮提取物 100 μg/mL 墨吉对虾 [133]
狗牙根 乙醇提取物 2% 凡纳滨对虾 [134]
栀子花 乙醇提取物 100 mg/kg 克氏原螯虾 [135]
红海藻江蓠 硫酸半乳聚糖 200 μg/mL 斑节对虾 [136]
红海藻龙须菜 硫酸半乳聚糖 1000 μg/mL 斑节对虾 [137]
曲浒苔 2-(2-羟基苯氧基)-1-苯乙醇 400 mg/kg 印度明对虾 [138]
表4  中草药抗WSSV活性
[1] Mosihuzzaman M. Herbal medicine in healthcare:an overview. Natural Product Communications, 2012, 7(6): 807-812.
pmid: 22816312
[2] Ge H, Wang Y F, Xu J, et al. Anti-influenza agents from traditional Chinese medicine. Natural Product Reports, 2010, 27(12): 1758-1780.
doi: 10.1039/c0np00005a pmid: 20941447
[3] Jian J C, Wu Z H. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture, 2003, 218(1-4): 1-9.
doi: 10.1016/S0044-8486(02)00192-8
[4] Chang J. Medicinal herbs: drugs or dietary supplements? Biochemical Pharmacology, 2000, 59(3): 211-219.
pmid: 10609549
[5] Citarasu T. Herbal biomedicines: a new opportunity for aquaculture industry. Aquaculture International, 2010, 18(3): 403-414.
doi: 10.1007/s10499-009-9253-7
[6] Hu Y, Ji J, Ling F, et al. Screening medicinal plants for use against Dactylogyrus intermedius (Monogenea) infection in goldfish. Journal of Aquatic Animal Health, 2014, 26(3): 127-136.
doi: 10.1080/08997659.2014.902872
[7] Valladão G M R, Gallani S U, Pilarski F. Phytotherapy as an alternative for treating fish disease. Journal of Veterinary Pharmacology and Therapeutics, 2015, 38(5): 417-428.
doi: 10.1111/jvp.12202 pmid: 25620601
[8] Tadese D A, Song C Y, Sun C X, et al. The role of currently used medicinal plants in aquaculture and their action mechanisms: a review. Reviews in Aquaculture, 2022, 14(2): 816-847.
doi: 10.1111/raq.12626
[9] Tóro R M, Gessner A A F, Furtado N A J C, et al. Activity of the Pinus elliottii resin compounds against Lernaea cyprinacea in vitro. Veterinary Parasitology, 2003, 118(1-2): 143-149.
doi: 10.1016/j.vetpar.2003.08.008
[10] Ekanem A P, Obiekezie A, Kloas W, et al. Effects of crude extracts of Mucuna pruriens (Fabaceae) and Carica papaya (Caricaceae) against the protozoan fish parasite Ichthyophthirius multifiliis. Parasitology Research, 2004, 92(5): 361-366.
pmid: 14735356
[11] Suzuki K, Misaka N, Sakai D K. Efficacy of green tea extract on removal of the ectoparasitic flagellate Ichthyobodo necator from chum salmon, Oncorhynchus keta, and Masu salmon, O. Masou. Aquaculture, 2006, 259(1-4): 17-27.
[12] 王高学, 程超, 陈安良, 等. 22种植物提取物及其6种化合物对鱼类指环虫的杀灭研究. 西北植物学报, 2006, 26(12): 2567-2573.
Wang G X, Cheng C, Chen A L, et al. Dactylogyrus killing efficacies of 22 plants extracts and its 6 compounds. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2567-2573.
[13] Liu Y T, Wang F, Wang G X, et al. In vivo anthelmintic activity of crude extracts of Radix angelicae pubescentis, Fructus bruceae, Caulis spatholobi, Semen aesculi, and Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitology Research, 2010, 106(5): 1233-1239.
doi: 10.1007/s00436-010-1799-9
[14] 王高学, 赵云奎, 姚嘉赟, 等. 银杏酚酸杀灭鱼类病原菌和指环虫的研究. 西北农林科技大学学报(自然科学版), 2006, 34(10): 11-15.
Wang G X, Zhao Y K, Yao J Y, et al. Study on killing activity of ginkgolic acids to pathogen and Dactylogyrus of fish. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(10): 11-15.
[15] 王高学, 徐钰, 王建华, 等. 29种天然植物提取物对指环虫杀灭作用的研究. 淡水渔业, 2006, 36(3): 3-8.
Wang G X, Xu Y, Wang J H, et al. Study on the killing of the 29 species of plants extraction to the Dactylogyrus. Freshwater Fisheries, 2006, 36(3): 3-8.
[16] 王高学, 马秋丽, 程超, 等. 8种植物杀灭鱼类指环虫的活性部位研究. 西北农林科技大学学报(自然科学版), 2008, 36(3): 64-68, 74.
Wang G X, Ma Q L, Cheng C, et al. Study on active site of 8 plants to control the Dactylogyrus of fish. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(3): 64-68, 74.
[17] 王高学, 李军, 赵良炜, 等. 盾叶薯蓣提取物对鱼类指环虫的杀灭效果. 大连水产学院学报, 2009, 24(5): 393-399.
Wang G X, Li J, Zhao L W, et al. Ethanol extract of plant Dioscorea zingiberensis against dactylogyrid Dactylogyrus intermedius found in goldfish Carassius auratus. Journal of Dalian Fisheries University, 2009, 24(5): 393-399.
[18] 王高学, 冯婷婷, 马秋丽, 等. 三种植物杀灭鱼类指环虫的活性部位研究. 中国水产, 2007(11): 82-84.
Wang G X, Feng T T, Ma Q L, et al. Study on active site of 3 plants to control the Dactylogyrus of fish. China Fisheries, 2007(11): 82-84.
[19] 王高学, 赵良炜, 李军. 17种天然植物提取物杀灭鱼类指环虫研究. 动物医学进展, 2009, 30(6): 21-24.
Wang G X, Zhao L W, Li J. Antiparasitic efficacy of 17 plant extracts against Dactylogyrus. Progress in Veterinary Medicine, 2009, 30(6): 21-24.
[20] Wang G X, Zhou Z, Cheng C, et al. Osthol and isopimpinellin from fructus cnidii for the control of Dactylogyrus intermedius in Carassius auratus. Veterinary Parasitology, 2008, 158(1-2): 144-151.
doi: 10.1016/j.vetpar.2008.07.034
[21] Wang G X, Jiang D X, Zhou Z, et al. In vivo assessment of anthelmintic efficacy of ginkgolic acids (C13∶0, C15∶1) on removal of Pseudodactylogyrus in European eel. Aquaculture, 2009, 297(1-4): 38-43.
doi: 10.1016/j.aquaculture.2009.09.012
[22] Wang G X, Han J, Feng T T, et al. Bioassay-guided isolation and identification of active compounds from Fructus Arctii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitology Research, 2009, 106(1): 247-255.
doi: 10.1007/s00436-009-1659-7
[23] Liu G L, Hu Y, Chen X H, et al. Synthesis and anthelmintic activity of coumarin-imidazole hybrid derivatives against Dactylogyrus intermedius in goldfish. Bioorganic & Medicinal Chemistry Letters, 2016, 26(20): 5039-5043.
doi: 10.1016/j.bmcl.2016.08.090
[24] Hu Y, Liu L, Liu G L, et al. Synthesis and anthelmintic activity of arctigenin derivatives against Dactylogyrus intermedius in goldfish. Bioorganic & Medicinal Chemistry Letters, 2017, 27(15): 3310-3316.
doi: 10.1016/j.bmcl.2017.06.023
[25] Tu X, Ling F, Huang A G, et al. Anthelmintic efficacy of Santalum album (Santalaceae) against monogenean infections in goldfish. Parasitology Research, 2013, 112(8): 2839-2845.
doi: 10.1007/s00436-013-3455-7
[26] Fridman S, Sinai T, Zilberg D. Efficacy of garlic based treatments against monogenean parasites infecting the guppy [Poecilia reticulata (Peters)]. Veterinary Parasitology, 2014, 203(1-2): 51-58.
doi: 10.1016/j.vetpar.2014.02.002 pmid: 24598083
[27] Levy G, Zilberg D, Paladini G, et al. Efficacy of ginger-based treatments against infection with Gyrodactylus turnbulli in the guppy [Poecilia reticulata (Peters)]. Veterinary Parasitology, 2015, 209(3-4): 235-241.
doi: 10.1016/j.vetpar.2015.03.002 pmid: 25819871
[28] Zhou S, Zou H, Wu S, et al. Effects of goldfish (Carassius auratus) population size and body condition on the transmission of Gyrodactylus kobayashii (Monogenea). Parasitology, 2017, 144(9): 1221-1228.
doi: 10.1017/S0031182017000543
[29] Zhang Y L, Tan X P, Tu X, et al. Efficacy and antiparasitic mechanism of curdione from Curcuma zedoaria against Gyrodactylus kobayashii in goldfish. Aquaculture, 2020, 523: 735186.
doi: 10.1016/j.aquaculture.2020.735186
[30] Tan X P, Hu Y, Qu S Y, et al. Effect of a new arctigenin derivative against Gyrodactylus kobayashii through inhibition of ATP production. Aquaculture, 2021, 539: 736671.
doi: 10.1016/j.aquaculture.2021.736671
[31] Shinn A P, Picón-Camacho S M, Bron J E, et al. The anti-protozoal activity of bronopol on the key life-stages of Ichthyophthirius multifiliis Fouquet, 1876 (Ciliophora). Veterinary Parasitology, 2012, 186(3-4): 229-236.
doi: 10.1016/j.vetpar.2011.11.025
[32] Schumacher I V, Wedekind H, El-Matbouli M. Efficacy of quinine against ichthyophthiriasis in common carp Cyprinus carpio. Diseases of Aquatic Organisms, 2011, 95(3): 217-224.
doi: 10.3354/dao02360 pmid: 21932533
[33] Yao J Y, Shen J Y, Li X L, et al. Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idella). Parasitology Research, 2010, 107(5): 1035-1042.
doi: 10.1007/s00436-010-1966-z
[34] Yao J Y, Zhou Z M, Li X L, et al. Antiparasitic efficacy of dihydrosanguinarine and dihydrochelerythrine from Macleaya microcarpa against Ichthyophthirius multifiliis in richadsin (Squaliobarbus curriculus). Veterinary Parasitology, 2011, 183(1-2): 8-13.
doi: 10.1016/j.vetpar.2011.07.021
[35] Zhang Q Z, Xu D H, Klesius P H. Evaluation of an antiparasitic compound extracted from Galla chinensis against fish parasite Ichthyophthirius multifiliis. Veterinary Parasitology, 2013, 198(1-2): 45-53.
doi: 10.1016/j.vetpar.2013.08.019
[36] Fu Y W, Zhang Q Z, Xu D H, et al. Antiparasitic effect of cynatratoside-C from Cynanchum atratum against Ichthyophthirius multifiliis on grass carp. Journal of Agricultural and Food Chemistry, 2014, 62(29): 7183-7189.
doi: 10.1021/jf5018675
[37] Shan X F, Meng Q F, Kang Y H, et al. Isolation of active compounds from methanol extracts of Toddalia asiatica against Ichthyophthirius multifiliis in goldfish (Carassius auratus). Veterinary Parasitology, 2014, 199(3-4): 250-254.
doi: 10.1016/j.vetpar.2013.10.021
[38] Yao J Y, Xu Y, Yin W L, et al. Evaluation of nystatin isolated from Streptomyces griseus SDX-4 against the ciliate, Ichthyophthirius multifiliis. Parasitology Research, 2015, 114(4): 1425-1431.
doi: 10.1007/s00436-015-4325-2
[39] Ling F, Jiang C, Liu G L, et al. Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius. Parasitology, 2015, 142(14): 1744-1750.
doi: 10.1017/S0031182015001031 pmid: 26442478
[40] Song K G, Ling F, Huang A G, et al. In vitro and in vivo assessment of the effect of antiprotozoal compounds isolated from Psoralea corylifolia against Ichthyophthirius multifiliis in fish. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5(2): 58-64.
doi: 10.1016/j.ijpddr.2015.04.001
[41] Liang J H, Fu Y W, Zhang Q Z, et al. Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in grass carp. Journal of Agricultural and Food Chemistry, 2015, 63(5): 1452-1459.
doi: 10.1021/jf505544e
[42] Song C G, Song K G, Wu X H, et al. Antiparasitic efficacy and safety assessment of magnolol against Ichthyophthirius multifiliis in goldfish. Aquaculture, 2018, 486: 9-17.
doi: 10.1016/j.aquaculture.2017.12.002
[43] 吴伟, 朱小惠. 印楝素对鱼的毒性及在鱼类寄生虫病防治上的应用. 农药学学报, 2003, 5(2): 85-89.
Wu W, Zhu X H. Toxic effects on fishes and application on the parasitic diseases control by azadirachtin. Chinese Journal of Pesticide Science, 2003, 5(2): 85-89.
[44] 张继平, 贺顺连, 胡卫平. 苦参不同方法提取物抗鱼体车轮虫作用的研究. 长江大学学报(自科版), 2005, 2(2): 57-59, 107.
Zhang J P, He S L, Hu W P. Effect on lustrating of fish’s Trichodinella ninuta by extractions from lightyellow Sophora(Sophora flavescens) through different methods. Journal of Yangtze University (Natural Science Edition), 2005, 2(2): 57-59, 107.
[45] 樊海平, 林煜, 钟全福, 等. 中草药对刺激隐核虫幼虫的杀灭效果. 福建农业科技, 2016(3): 12-14.
Fan H P, Lin Y, Zhong Q F, et al. Insecticidal efficacy of Chinese herbal medicine on Cryptocryon irritans. Fujian Agricultural Science and Technology, 2016(3): 12-14.
[46] 喻运珍, 艾桃山, 王玉群, 魏朝辉, 李雪莲. 23种植物提取物对棘头虫杀灭活性观察. 水利渔业, 2004, 25(6): 82-83.
Yu Y Z, Ai T S, Wang Y Q, et al. Insecticidal activity of 23 plant extracts against Acanthocephalus. Reservoir Fisheries, 2004, 25(6): 82-83.
[47] Wu S J. Dietary Astragalus membranaceus polysaccharide ameliorates the growth performance and innate immunity of juvenile crucian carp (Carassius auratus). International Journal of Biological Macromolecules, 2020, 149: 877-881.
doi: S0141-8130(20)30310-X pmid: 32027906
[48] Naena E. Yucca plant as treatment for Pseudomonas aeruginosa infection in Nile tilapia farms with emphasis on its effect on growth performance. Alexandria Journal of Veterinary Sciences, 2020, 66(1): 64.
doi: 10.5455/ajvs.113537
[49] Hoseinifar S H, Jahazi M A, Mohseni R, et al. Effects of dietary fern (Adiantum capillus-veneris) leaves powder on serum and mucus antioxidant defence, immunological responses, antimicrobial activity and growth performance of common carp (Cyprinus carpio) juveniles. Fish & Shellfish Immunology, 2020, 106: 959-966.
[50] Heydari M, Firouzbakhsh F, Paknejad H. Effects of Mentha longifolia extract on some blood and immune parameters, and disease resistance against yersiniosis in rainbow trout. Aquaculture, 2020, 515: 734586.
doi: 10.1016/j.aquaculture.2019.734586
[51] Doan H V, Hoseinifar S H, Jaturasitha S, et al. The effects of berberine powder supplementation on growth performance, skin mucus immune response, serum immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture, 2020, 520: 734927.
doi: 10.1016/j.aquaculture.2020.734927
[52] Vijayaram S, Sun Y Z, Zuorro A, et al. Bioactive immunostimulants as health-promoting feed additives in aquaculture: a review. Fish & Shellfish Immunology, 2022, 130: 294-308.
[53] Naiel M A E, Ismael N E M, Negm S S, et al. Rosemary leaf powder-supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile Tilapia (Oreochromis niloticus). Aquaculture, 2020, 526: 735370.
doi: 10.1016/j.aquaculture.2020.735370
[54] Mehrinakhi Z, Ahmadifar E, Sheikhzadeh N, et al. Extract of grape seed enhances the growth performance, humoral and mucosal immunity, and resistance of common carp (Cyprinus carpio) against Aeromonas hydrophila. Annals of Animal Science, 2021, 21(1): 217-232.
doi: 10.2478/aoas-2020-0049
[55] Li M Y, Zhu X M, Tian J X, et al. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune, antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture, 2019, 501: 473-481.
doi: 10.1016/j.aquaculture.2018.12.011
[56] Sarhan I, Abdel-Aziz S, Said A, et al. Effect of dietary supplementation of extracted jojoba meal on hematology, biochemical parameters and disease resistance in Nile tilapia (Oreochromis niloticus) infected by Aeromonas hydrophila. Egyptian Journal for Aquaculture, 2019, 9(3): 13-31.
doi: 10.21608/eja.2019.18567.1007
[57] Soltanian M, Langrodi H F, Nejad M M. The use of Zingiber officinale extract against Yersinia ruckeri and its effects on the antioxidant status and immune response in Oncorhynchus mykiss. International Journal of Aquatic Biology, 2019, 7: 301-314.
[58] Kakoolaki S, Akbary P, Zorriehzahra M J, et al. Camellia sinensis supplemented diet enhances the innate non-specific responses, haematological parameters and growth performance in Mugil cephalus against Photobacterium damselae. Fish & Shellfish Immunology, 2016, 57: 379-385.
[59] Ghosh A K, Panda S K, Luyten W. Anti-Vibrio and immune-enhancing activity of medicinal plants in shrimp: a comprehensive review. Fish & Shellfish Immunology, 2021, 117: 192-210.
[60] Talpur A D. Mentha piperita (Peppermint) as feed additive enhanced growth performance, survival, immune response and disease resistance of Asian seabass, Lates calcarifer (Bloch) against Vibrio harveyi infection. Aquaculture, 2014, 420-421: 71-78.
[61] Foysal M J, Alam M, Momtaz F, et al. Dietary supplementation of garlic (Allium sativum) modulates gut microbiota and health status of tilapia (Oreochromis niloticus) against Streptococcus iniae infection. Aquaculture Research, 2019, 50(8): 2107-2116.
doi: 10.1111/are.14088
[62] Verma V, Prakash O, Kumar R S, et al. Water hyacinth (Eichhornia crassipes) leaves enhances disease resistance in Channa punctata from Vibrio harveyi infection. The Journal of Basic and Applied Zoology, 2021, 82: 1-11.
doi: 10.1186/s41936-020-00198-4
[63] Zhang X H, Sun Z Y, Cai J F, et al. Effects of dietary fish meal replacement by fermented Moringa (Moringa oleifera Lam.) leaves on growth performance, nonspecific immunity and disease resistance against Aeromonas hydrophila in juvenile gibel carp (Carassius auratus gibelio var. CAS III). Fish & Shellfish Immunology, 2020, 102: 430-439.
[64] Bao L S, Chen Y H, Li H H, et al. Dietary Ginkgo biloba leaf extract alters immune-related gene expression and disease resistance to Aeromonas hydrophila in common carp Cyprinus carpio. Fish & Shellfish Immunology, 2019, 94: 810-818.
[65] Yousefi M, Ghafarifarsani H, Hoseinifar S H, et al. Effects of dietary marjoram, Origanum majorana extract on growth performance, hematological, antioxidant, humoral and mucosal immune responses, and resistance of common carp, Cyprinus carpio against Aeromonas hydrophila. Fish & Shellfish Immunology, 2021, 108: 127-133.
[66] Adeniyi O V, Olaifa F E, Emikpe B O. Effects of dietary tamarind pulp extract on growth performance, nutrient digestibility, intestinal morphology, and resistance to Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus L.). Journal of Applied Aquaculture, 2022, 34(1): 43-63.
doi: 10.1080/10454438.2020.1785984
[67] Saiyad Musthafa M, Asgari S M, Kurian A, et al. Protective efficacy of Mucuna pruriens (L.) seed meal enriched diet on growth performance, innate immunity, and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish & Shellfish Immunology, 2018, 75: 374-380.
[68] Choi S H, Park K H, Yoon T J, et al. Dietary Korean mistletoe enhances cellular non-specific immune responses and survival of Japanese eel (Anguilla japonica). Fish & Shellfish Immunology, 2008, 24(1): 67-73.
[69] Palanikani R, Chanthini K M P, Soranam R, et al. Efficacy of Andrographis paniculata supplements induce a non-specific immune system against the pathogenicity of Aeromonas hydrophila infection in Indian major carp (Labeo rohita). Environmental Science and Pollution Research International, 2020, 27(19): 23420-23436.
doi: 10.1007/s11356-019-05957-7
[70] 谭宏亮, 陈凯, 习丙文, 等. 白藜芦醇抑制嗜水气单胞菌毒力作用研究. 水生生物学报, 2019, 43(4): 861-868.
Tan H L, Chen K, Xi B W, et al. Resveratrol inhibits growth, virulence and biofilm formation of Aeromonas hydrophila. Acta Hydrobiologica Sinica, 2019, 43(4): 861-868.
[71] Lu C X, Wang H X, Lv W P, et al. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fisheries Science, 2011, 77(3): 375-384.
doi: 10.1007/s12562-011-0341-z
[72] 牛国一, 王秋举, 李珊珊, 等. 厚朴酚和黄藤素对鱼类3种常见致病菌的抑制效应. 云南农业大学学报(自然科学), 2015, 30(3): 402-407.
Niu G Y, Wang Q J, Li S S, et al. Antibacterial effects of magnolol and palmatine on three common pathogenic bacteria in fish. Journal of Yunnan Agricultural University (Natural Science), 2015, 30(3): 402-407.
[73] 王红连, 张凌裳, 张东升, 等. 杜仲叶提取物对鲫鱼出血性病原菌抑菌试验的研究. 饲料工业, 2009, 30(12): 28-30.
Wang H L, Zhang L S, Zhang D S, et al. Study on the antibacterial effect of Eucommia ulmoides leaf extract on Carassius auratus hemorrhagic pathogens. Feed Industry, 2009, 30(12): 28-30.
[74] Yilmaz S, Yilmaz E, Dawood M A O, et al. Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: a review. Aquaculture, 2022, 547: 737514.
doi: 10.1016/j.aquaculture.2021.737514
[75] Abdel-Latif H M R, Yilmaz E, Dawood M A O, et al. Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: a review. Aquaculture, 2022, 551: 737951.
doi: 10.1016/j.aquaculture.2022.737951
[76] Zhu F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture, 2020, 526: 735422.
doi: 10.1016/j.aquaculture.2020.735422
[77] Ngo H V T, Huang H T, Lee P T, et al. Effects of Phyllanthus amarus extract on nonspecific immune responses, growth, and resistance to Vibrio alginolyticus in white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 2020, 107: 1-8.
[78] Munaeni W, Widanarni, Yuhana M, et al. Effect in white shrimp Litopenaeus vannamei of Eleutherine bulbosa (Mill.) Urb. Powder on immune genes expression and resistance against Vibrio parahaemolyticus infection. Fish & Shellfish Immunology, 2020, 102: 218-227.
[79] Zhai Q Q, Li J. Effectiveness of traditional Chinese herbal medicine, San-Huang-San, in combination with enrofloxacin to treat AHPND-causing strain of Vibrio parahaemolyticus infection in Litopenaeus vannamei. Fish & Shellfish Immunology, 2019, 87: 360-370.
[80] Kuo I P, Lee P T, Nan F H. Rheum officinale extract promotes the innate immunity of orange-spotted grouper (Epinephelus coioides) and exerts strong bactericidal activity against six aquatic pathogens. Fish & Shellfish Immunology, 2020, 102: 117-124.
[81] Ng’ambi J W, Li R H, Mu C K, et al. Dietary administration of saponin stimulates growth of the swimming crab Portunus trituberculatus and enhances its resistance against Vibrio alginolyticus infection. Fish & Shellfish Immunology, 2016, 59: 305-311.
[82] Sivaram V, Babu M M, Immanuel G, et al. Growth and immune response of juvenile greasy groupers (Epinephelus tauvina) fed with herbal antibacterial active principle supplemented diets against Vibrio harveyi infections. Aquaculture, 2004, 237(1-4): 9-20.
doi: 10.1016/j.aquaculture.2004.03.014
[83] van Doan H, Hoseinifar S H, Sringarm K, et al. Effects of Assam tea extract on growth, skin mucus, serum immunity and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish & Shellfish Immunology, 2019, 93: 428-435.
[84] Kurian A, van Doan H, Tapingkae W, et al. Modulation of mucosal parameters, innate immunity, growth and resistance against Streptococcus agalactiae by enrichment of Nile tilapia (Oreochromis niloticus) diet with Leucas aspera. Fish & Shellfish Immunology, 2020, 97: 165-172.
[85] Abutbul S, Golan-Goldhirsh A, Barazani O, et al. Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture, 2004, 238(1-4): 97-105.
doi: 10.1016/j.aquaculture.2004.05.016
[86] Guo W L, Deng H W, Wang F, et al. In vitro and in vivo screening of herbal extracts against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquaculture, 2019, 503: 412-421.
doi: 10.1016/j.aquaculture.2019.01.024
[87] Yg'lmaz S, Ergün S. Dietary supplementation with allspice Pimenta dioica reduces the occurrence of streptococcal disease during first feeding of Mozambique tilapia fry. Journal of Aquatic Animal Health, 2014, 26(3): 144-148.
doi: 10.1080/08997659.2014.893459
[88] Abarike E D, Jian J C, Tang J F, et al. Traditional Chinese medicine enhances growth, immune response, and resistance to Streptococcus agalactiae in Nile tilapia. Journal of Aquatic Animal Health, 2019, 31(1): 46-55.
doi: 10.1002/aah.10049
[89] Verma V K, Rani K V, Kumar S R, et al. Leucaena leucocephala pod seed protein as an alternate to animal protein in fish feed and evaluation of its role to fight against infection caused by Vibrio harveyi and Pseudomonas aeruginosa. Fish & Shellfish Immunology, 2018, 76: 324-332.
[90] Adel M, Pourgholam R, Zorriehzahra J, et al. Hemato - Immunological and biochemical parameters, skin antibacterial activity, and survival in rainbow trout (Oncorhynchus mykiss) following the diet supplemented with Mentha piperita against Yersinia ruckeri. Fish & Shellfish Immunology, 2016, 55: 267-273.
[91] Naderi Farsani M, Hoseinifar S H, Rashidian G, et al. Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 2019, 91: 233-240.
[92] Bilen S, Ispir S, Kenanoglu O N, et al. Effects of Greek juniper (Juniperus excelsa) extract on immune responses and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Journal of Fish Diseases, 2021, 44(6): 729-738.
doi: 10.1111/jfd.13293
[93] Qadir U, Paul V I, Ganesh P. Preliminary phytochemical screening and in vitro antibacterial activity of Anamirta cocculus (Linn.) seeds. Journal of King Saud University - Science, 2015, 27(2): 97-104.
doi: 10.1016/j.jksus.2014.04.004
[94] Hai N V. The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture, 2015, 446: 88-96.
doi: 10.1016/j.aquaculture.2015.03.014
[95] Kačániová M, Terentjeva M, Vukovic N, et al. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish. Saudi Pharmaceutical Journal, 2017, 25(8): 1108-1116.
doi: 10.1016/j.jsps.2017.07.005
[96] Mousavi S M, Wilson G, Raftos D, et al. Antibacterial activities of a new combination of essential oils against marine bacteria. Aquaculture International, 2011, 19(1): 205-214.
doi: 10.1007/s10499-010-9354-3
[97] Harikrishnan R, Kim M C, Kim J S, et al. Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Oplegnathus fasciatus (Temminck & Schlegel) against Edwardsiella tarda. Fish & Shellfish Immunology, 2011, 30(3): 886-893.
[98] Zhang W N, Zhao J P, Ma Y F, et al. The effective components of herbal medicines used for prevention and control of fish diseases. Fish & Shellfish Immunology, 2022, 126: 73-83.
[99] 桂朗, 张奇亚. 中国水产动物病毒学研究概述. 水产学报, 2019, 43(1): 168-187.
Gui L, Zhang Q Y. A brief review of aquatic animal virology researches in China. Journal of Fisheries of China, 2019, 43(1): 168-187.
[100] 杭小英, 袁雪梅, 吕孙建, 等. 抗大口黑鲈弹状病毒中草药的筛选及抗病毒效果. 江苏农业科学, 2021, 49(14): 155-159.
Hang X Y, Yuan X M, Lv S J, et al. Screening of Chinese herbal medicine against rhabdovirus of largemouth bass and its antiviral effect. Jiangsu Agricultural Sciences, 2021, 49(14): 155-159.
[101] Li Y, Ran C, Wei K J, et al. The effect of Astragalus polysaccharide on growth, gut and liver health, and anti-viral immunity of zebrafish. Aquaculture, 2021, 540: 736677.
doi: 10.1016/j.aquaculture.2021.736677
[102] Chen C, Shen Y F, Hu Y, et al. Highly efficient inhibition of spring viraemia of carp virus replication in vitro mediated by bavachin, a major constituent of Psoralea corlifonia Lynn. Virus Research, 2018, 255: 24-35.
doi: 10.1016/j.virusres.2018.06.002
[103] Shen Y F, Hu Y, Zhang Z, et al. Saikosaponin D efficiently inhibits SVCV infection in vitro and in vivo. Aquaculture, 2019, 504: 281-290.
doi: 10.1016/j.aquaculture.2019.02.014
[104] Shen Y F, Liu L, Chen W C, et al. Evaluation on the antiviral activity of arctigenin against spring viraemia of carp virus. Aquaculture, 2018, 483: 252-262.
doi: 10.1016/j.aquaculture.2017.09.001
[105] Librán-Pérez M, Pereiro P, Figueras A, et al. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish & Shellfish Immunology, 2019, 95: 595-605.
[106] Ren G M, Xu L M, Lu T Y, et al. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. International Journal of Biological Macromolecules, 2018, 115: 1202-1210.
doi: 10.1016/j.ijbiomac.2018.04.132
[107] Li B Y, Hu Y, Li J, et al. Ursolic acid from Prunella vulgaris L. efficiently inhibits IHNV infection in vitro and in vivo. Virus Research, 2019, 273: 197741.
doi: 10.1016/j.virusres.2019.197741
[108] Kang S Y, Kang J Y, Oh M J. Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses in vitro. Journal of Microbiology (Seoul, Korea), 2012, 50(2): 293-300.
[109] Park Y J, Moon C, Kang J H, et al. Antiviral effects of extracts from Celosia cristata and Raphanus sativus roots against viral hemorrhagic septicemia virus. Archives of Virology, 2017, 162(6): 1711-1716.
doi: 10.1007/s00705-017-3270-z
[110] Wang H, Liu W S, Yu F, et al. Identification of (-)-epigallocatechin-3-gallate as a potential agent for blocking infection by grass carp reovirus. Archives of Virology, 2016, 161(4): 1053-1059.
doi: 10.1007/s00705-016-2751-9 pmid: 26758731
[111] Yu X B, Liu G L, Zhu B, et al. In vitro immunocompetence of two compounds isolated from Polygala tenuifolia and development of resistance against grass carp reovirus (GCRV) and Dactylogyrus intermedius in respective host. Fish & Shellfish Immunology, 2014, 41(2): 541-548.
[112] Chen X H, Hao K, Yu X B, et al. Magnolol protects Ctenopharyngodon idella kidney cells from apoptosis induced by grass carp reovirus. Fish & Shellfish Immunology, 2018, 74: 426-435.
[113] Xu N, Fu J, Wang H, et al. Quercetin counteracts the pro-viral effect of heat shock response in grass carp cells with its therapeutic potential against Aquareovirus. Aquaculture Research, 2021, 52(7): 3164-3173.
doi: 10.1111/are.15163
[114] Arulmoorthy M P, Anandajothi E, Vasudevan S, et al. Major viral diseases in culturable penaeid shrimps: a review. Aquaculture International, 2020, 28(5): 1939-1967.
doi: 10.1007/s10499-020-00568-3
[115] Chotigeat W, Tongsupa S, Supamataya K, et al. Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture, 2004, 233(1-4): 23-30.
doi: 10.1016/j.aquaculture.2003.09.025
[116] Supamattaya K, Kiriratnikom S, Boonyaratpalin M, et al. Effect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture, 2005, 248(1-4): 207-216.
doi: 10.1016/j.aquaculture.2005.04.014
[117] Rao Y L, Su J G. Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. Journal of Immunology Research, 2015, 2015: 670437.
[118] Hao K, Chen X H, Qi X Z, et al. Protective immunity of grass carp induced by DNA vaccine encoding capsid protein gene (vp7) of grass carp reovirus using bacterial ghost as delivery vehicles. Fish & Shellfish Immunology, 2017, 64: 414-425.
[119] Chen X H, Hu Y, Shan L P, et al. Magnolol and honokiol from Magnolia officinalis enhanced antiviral immune responses against grass carp reovirus in Ctenopharyngodon idella kidney cells. Fish & Shellfish Immunology, 2017, 63: 245-254.
[120] Fu J, Xu N, Sun H, et al. Quercetin protects rare minnow Gobiocypris rarus from infection of genotype II grass carp reovirus. Aquaculture Research, 2021, 52(10): 4867-4873.
doi: 10.1111/are.15321
[121] Immanuel G, Sivagnanavelmurugan M, Balasubramanian V, et al. Effect of hot water extracts of brown seaweeds Sargassum spp. on growth and resistance to white spot syndrome virus in shrimp Penaeus monodon postlarvae. Aquaculture Research, 2010, 41(10): e545-e553.
[122] Citarasu T, Sivaram V, Immanuel G, et al. Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish & Shellfish Immunology, 2006, 21(4): 372-384.
[123] Huynh T G, Yeh S T, Lin Y C, et al. White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & Shellfish Immunology, 2011, 31(2): 286-293.
[124] Lin Y C, Yeh S T, Li C C, et al. An immersion of Gracilaria tenuistipitata extract improves the immunity and survival of white shrimp Litopenaeus vannamei challenged with white spot syndrome virus. Fish & Shellfish Immunology, 2011, 31(6): 1239-1246.
[125] Sudheer N S, Philip R, Bright Singh I S, Anti-white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon. Archives of Virology, 2012, 157(9): 1665-1675.
doi: 10.1007/s00705-012-1346-3 pmid: 22643833
[126] Chithambaran S, David S. A ntiviral property and growth promoting potential of Punarnava, Boerhaavia diffusa in tiger prawn culture. Indian Journal of Geo-marine Sciences, 2014, 12(43): 2236-2243.
[127] Balasubramanian G, Sarathi M, Kumar S R, et al. Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture, 2007, 263(1-4): 15-19.
doi: 10.1016/j.aquaculture.2006.09.037
[128] Sivagnanavelmurugan M, Marudhupandi T, Palavesam A, et al. Antiviral effect of fucoidan extracted from the brown seaweed, Sargassum wightii, on shrimp Penaeus monodon postlarvae against white spot syndrome virus. Journal of the World Aquaculture Society, 2012, 43(5): 697-706.
doi: 10.1111/j.1749-7345.2012.00596.x
[129] Medina-Beltrán V, Luna-González A, Fierro-Coronado J A, et al. Echinacea purpurea and Uncaria tomentosa reduce the prevalence of WSSV in witheleg shrimp (Litopenaeus vannamei) cultured under laboratory conditions. Aquaculture, 2012, 358-359: 164-169.
[130] Bindhu F, Velmurugan S, Donio M B S, et al. Influence of Agathi grandiflora active principles inhibit viral multiplication and stimulate immune system in Indian white shrimp Fenneropenaeus indicus against white spot syndrome virus infection. Fish & Shellfish Immunology, 2014, 41(2): 482-492.
[131] Yin X L, Li Z J, Yang K, et al. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon. Fish & Shellfish Immunology, 2014, 40(1): 190-196.
[132] Wu C C, Chang Y P, Wang J J, et al. Dietary administration of Gynura bicolor (Roxb. Willd.) DC water extract enhances immune response and survival rate against Vibrio alginolyticus and white spot syndrome virus in white shrimp Litopeneaus vannamei. Fish & Shellfish Immunology, 2015, 42(1): 25-33.
[133] Maikaeo L, Chotigeat W, Mahabusarakam W. Emilia sonchifolia extract activity against white spot syndrome virus and yellow head virus in shrimp cell cultures. Diseases of Aquatic Organisms, 2015, 115(2): 157-164.
doi: 10.3354/dao02891 pmid: 26203887
[134] Tomazelli Junior O, Kuhn F, Mendonça Padilha P J, et al. Effect of Cynodon dactylon extract on white spot virus-infected Litopenaeus vannamei. Aquaculture International, 2017, 25(3): 1107-1122.
doi: 10.1007/s10499-016-0101-2
[135] Huang A G, Tu X, Qi X Z, et al. Gardenia jasminoides Ellis inhibit white spot syndrome virus replication in red swamp crayfish Procambarus clarkii. Aquaculture, 2019, 504: 239-247.
doi: 10.1016/j.aquaculture.2019.02.008
[136] Wongprasert K, Rudtanatip T, Praiboon J. Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fisheri and development of resistance against white spot syndrome virus (WSSV) in shrimp. Fish & Shellfish Immunology, 2014, 36(1): 52-60.
[137] Rudtanatip T, Asuvapongpatana S, Withyachumnarnkul B, et al. Sulfated galactans isolated from the red seaweed Gracilaria fisheri target the envelope proteins of white spot syndrome virus and protect against viral infection in shrimp haemocytes. The Journal of General Virology, 2014, 95(Pt 5): 1126-1134.
doi: 10.1099/vir.0.062919-0
[138] Velmurugan S, Jerin N, Michael Babu M, et al. Screening and characterization of antiviral compounds from Enteromorpha flexuosa against white spot syndrome virus (WSSV) and its in vivo influence on Indian white shrimp Fenneropenaeus indicus. Aquaculture International, 2015, 23(1): 65-80.
doi: 10.1007/s10499-014-9798-y
[139] Wang Z, Sun B Z, Zhu F. Epigallocatechin-3-gallate protects Kuruma shrimp Marsupeneaus japonicus from white spot syndrome virus and Vibrio alginolyticus. Fish & Shellfish Immunology, 2018, 78: 1-9.
[140] Shan L P, Zhang X, Hu Y, et al. Antiviral activity of esculin against white spot syndrome virus: a new starting point for prevention and control of white spot disease outbreaks in shrimp seedling culture. Journal of Fish Diseases, 2022, 45(1): 59-68.
doi: 10.1111/jfd.13533
[141] Hu Y, Liu L, Shan L P, et al. Natural ingredient paeoniflorin could be a lead compound against white spot syndrome virus infection in Litopenaeus vannamei. Journal of Fish Diseases, 2022, 45(2): 349-359.
doi: 10.1111/jfd.13561
[142] Huang A G, Tan X P, Qu S Y, et al. Evaluation on the antiviral activity of genipin against white spot syndrome virus in crayfish. Fish & Shellfish Immunology, 2019, 93: 380-386.
[143] Yu Q, Liu M Z, Xiao H H, et al. The inhibitory activities and antiviral mechanism of Viola philippica aqueous extracts against grouper Iridovirus infection in vitro and in vivo. Journal of Fish Diseases, 2019, 42(6): 859-868.
doi: 10.1111/jfd.12987
[144] Liu M Z, Yu Q, Yi Y, et al. Antiviral activities of Lonicera japonica Thunb. components against grouper Iridovirus in vitro and in vivo. Aquaculture, 2020, 519: 734882.
doi: 10.1016/j.aquaculture.2019.734882
[145] Haetrakul T, Dunbar S G, Chansue N. Antiviral activities of Clinacanthus nutans (Burm.f.) Lindau extract against Cyprinid herpesvirus 3 in koi (Cyprinus carpio koi). Journal of Fish Diseases, 2018, 41(4): 581-587.
doi: 10.1111/jfd.12757 pmid: 29468849
[1] 赵俊杰,张龙,王靓,陈旭升,毛忠贵. 具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *[J]. 中国生物工程杂志, 2018, 38(8): 59-68.
[2] 陈娟, 杨慧林, 黄运红, 龙中儿. 炭样小单孢菌中抗生素生物合成相关蛋白的筛选[J]. 中国生物工程杂志, 2016, 36(7): 55-63.
[3] 沈伟涛, 王明钰, 王允坤, 王新华, 徐海. 抗生素含量测定方法的分析概述[J]. 中国生物工程杂志, 2016, 36(6): 119-126.
[4] 田宝玉, 马荣琴. 环境微生物的抗生素抗性和抗性组[J]. 中国生物工程杂志, 2015, 35(10): 108-114.
[5] 张正玉, 吴绵斌. 抗生素分离纯化技术研究进展[J]. 中国生物工程杂志, 2012, 32(6): 98-103.
[6] 翟亚楠, 郭昊, 魏浩, 章栋梁, 姚树林, 郝慧, 别小妹. 芽孢杆菌(Bacillus sp.)脂肽抗生素发酵工艺及分离纯化[J]. 中国生物工程杂志, 2011, 31(11): 114-122.
[7] 刘天龙, 王燕飞, 邹明强, 刘小雷, 云彩麟. 利用悬液芯片系统建立一种高通量检测牛奶中头孢氨苄和莱克多巴胺残留的方法[J]. 中国生物工程杂志, 2011, 31(02): 79-84.
[8] 路延笃,崔红利,秦松1,冯大伟,姜鹏2,衣悦涛1. 三角褐指藻基因枪转化体系的建立[J]. 中国生物工程杂志, 2009, 29(06): 91-96.
[9] 裴海生,杨光,李春,张刚,曹竹安. 透明颤菌血红蛋白的研究进展及其在发酵工业中的应用[J]. 中国生物工程杂志, 2008, 28(7): 133-138.
[10] 王琳,齐孟文. 邻氯青霉素单克隆抗体的制备及特性鉴定[J]. 中国生物工程杂志, 2006, 26(02): 66-68.
[11] 周军, 唐雅君, 张惠展. 放线菌次级代谢途径的设计[J]. 中国生物工程杂志, 1999, 19(5): 40-45.
[12] 潘杰, 李佐虎, 秦德华. 双水相技术在抗生素分离中的应用[J]. 中国生物工程杂志, 1999, 19(2): 48-51,60.
[13] 曲章义, 张丽梅, 牛美娟, 李绍贤. 绿脓杆菌抗药性质粒接合和转化作用的研究[J]. 中国生物工程杂志, 1993, 13(6): 57-57.
[14] 杨吉成, 刘静山, 盛伟华, 张云, 蔡苏皖. 中药有效成分在干扰素生物技术实验与临床研究中的应用[J]. 中国生物工程杂志, 1993, 13(3): 30-34.
[15] 王巽一, 李焕娄. 微生物原生质体融合育种的进展[J]. 中国生物工程杂志, 1992, 12(4): 40-45.