Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 76-83    DOI: 10.13523/j.cb.20180810
综述     
力学微环境影响间充质干细胞分化的研究现状 *
施文雯1,2,张蕾2,**()
1. 昆明医科大学 昆明 650011
2. 昆明医科大学附属甘美医院(昆明市第一人民医院)生物医学实验中心 昆明 650011
Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation
Wen-wen SHI1,2,Lei ZHANG2,**()
1. Kunming Medical University, Kunming 650011, China
2. Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University (First Hospital of Kunming), Kunming 650011, China
 全文: PDF(648 KB)   HTML
摘要:

间充质干细胞(mesenchymal stem cells, MSCs) 具有很强的自我复制能力和多向分化潜能,是近年来热门研究的种子细胞。MSCs的生长微环境可以影响调控干细胞的生长、分化,力学刺激是MSCs分化的影响因素之一。细胞外基质硬度、机械应力(剪切力、静压力、牵张力)、微重力等因素对MSCs的分化作用是当前研究的热点。就细胞外基质硬度、机械应力以及机械应力作用于三维支架培养对MSCs分化的影响等方面进行综述。

关键词: 力学刺激间充质干细胞细胞分化    
Abstract:

Mesenchymal stem cells (MSCs) have capacity of self-amplification and multi-direction differentiation, which is a hot research topic as popular seeding cell in recent years. It is well known that micro-environment modulates MSCs’ development and differentiation. Mechanical stimulation is one of the factors effecting on MSCs’ differentiation. The effect of extracellular matrix stiffness and mechanical stress, like shearing stress, hydrostatic pressure, stretch stress, and microgravity on MSCs remains a hot point. In the present article, the effects of external matrix stiffness, mechanical stress and the mechanical force on three-dimensional scaffolds on the MSCs’ differentiation were mainly reviewed.

Key words: Mechanical stimulation    Mesenchymal stem cells    Cell differentiation
收稿日期: 2018-04-04 出版日期: 2018-09-11
ZTFLH:  Q233  
基金资助: 国家自然科学基金(81660303)
通讯作者: 张蕾     E-mail: zlei01@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
施文雯
张蕾

引用本文:

施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.

Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation. China Biotechnology, 2018, 38(8): 76-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180810        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/76

图1  机械刺激在三维支架中影响MSCs分化的模式图
[1] Anzalone R, Lo I M, Corrao S , et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev, 2010,19(4):423-438.
doi: 10.1089/scd.2009.0299
[2] Kalaszczynska I, Ferdyn K . Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int, 2015: 430847.
[3] Toma C, Pittenger M F, Cahill K S , et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002,105(1):93-98.
doi: 10.1161/hc0102.101442
[4] Lee K D, Kuo T K, Whang-Peng J , et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004,40(6):1275-1284.
doi: 10.1002/hep.20469 pmid: 15562440
[5] Yun D H, Song H Y, Lee M J , et al. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med, 2009,41(1):17-24.
doi: 10.3858/emm.2009.41.1.003
[6] Olvera D, Sathy B N, Carroll S F , et al. Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation. Acta Biomater, 2017,64:148-160.
doi: 10.1016/j.actbio.2017.10.010
[7] Rashedi I, Talele N, Wang X H , et al. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One, 2017,12(10):e0187348.
doi: 10.1371/journal.pone.0187348 pmid: 5663483
[8] 刘洋, 韩东, 华闻达 , 等. 基底硬度与形貌协同对大鼠骨髓间充质干细胞成骨分化的影响. 医用生物力学, 2016,31(3):218-226.
Liu Y, Han D, Hua W D , et al. Synergic effects of substrate stiffness and topography on osteogenic differentiation of rat bone mesenchymal stem cells. Journal of Medical Biomechanics, 2016,31(3):218-226.
[9] Xu J, Sun M, Tan Y , et al. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells. Differentiation, 2017,96:30-39.
doi: 10.1016/j.diff.2017.07.001
[10] Chen G, Dong C, Yang L , et al. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces, 2015,7(29):15790-15802.
doi: 10.1021/acsami.5b02662
[11] Hwang J H, Byun M R, Kim A R , et al. Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS One, 2015,10(8):e0135519.
doi: 10.1371/journal.pone.0135519 pmid: 4532446
[12] Shih Y R, Tseng K F, Lai H Y , et al. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res, 2011,26(4):730-738.
doi: 10.1002/jbmr.278
[13] Sun M, Chi G, Xu J , et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha5. Stem Cell Res Ther, 2018,9(1):52-64.
doi: 10.1186/s13287-018-0798-0
[14] Maul T M, Chew D W, Nieponice A , et al. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol, 2011,10(6):939-953.
doi: 10.1007/s10237-010-0285-8
[15] Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar M A . Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun, 2009,388(3):601-605.
doi: 10.1016/j.bbrc.2009.08.072
[16] Yourek G, McCormick S M, Mao J J , et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med, 2010,5(5):713-724.
doi: 10.2217/rme.10.60
[17] Zhao F, Chella R, Ma T . Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng, 2007,96(3):584-595.
doi: 10.1002/(ISSN)1097-0290
[18] Griffith L G, Swartz M A . Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol, 2006,7(3):211-224.
doi: 10.1038/nrm1858
[19] Lee H J, Diaz M F, Ewere A , et al. Focal adhesion kinase signaling regulates anti-inflammatory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Cell Signal, 2017,38:1-9.
doi: 10.1016/j.cellsig.2017.06.012
[20] Liu L, Yu B, Chen J , et al. Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech Model Mechanobiol, 2012,11(3-4):391-401.
doi: 10.1007/s10237-011-0319-x
[21] Kim K M, Choi Y J, Hwang J H , et al. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One, 2014,9(3):e92427.
doi: 10.1371/journal.pone.0092427
[22] Hu K, Sun H, Gui B , et al. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed Pharmacother, 2017,91:841-848.
doi: 10.1016/j.biopha.2017.04.094
[23] 易飞舟, 赵萤, 张旻 . 流体压力对骨髓间充质干细胞软骨向分化影响的体外实验研究. 口腔医学, 2016,36(6):481-484.
Yi F Z, Zhao Y, Zhang M . In vitro study of the effects of hydrodynamic pressure on chondrogenic differentiation of bone marrow mesenchymal stem cells. Stomatology, 2016,36(6):481-484.
[24] 陈江, 贾育松, 柳根哲 , 等. 体外静水压环境下细胞因子诱导骨髓间充质干细胞向髓核样细胞分化. 中国组织工程研究, 2016,20(2):191-196.
doi: 10.3969/j.issn.2095-4344.2016.02.007
Chen J, Jia Y S, Liu G Z , et al. Cytokine-induced differentiation of bone marrow mesenchymal stem cells into nucleus pulposus-like cells under hydrostatic pressure in vitro. Chinese Journal of Tissue Engineering Research, 2016,20(2):191-196.
doi: 10.3969/j.issn.2095-4344.2016.02.007
[25] Javanmard F, Azadbakht M, Pourmoradi M . The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrowderived mesenchymal stem cells. Bratisl Lek Listy, 2016,117(5):283-289.
[26] Ye R, Hao J, Song J , et al. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells. J Cell Biochem, 2014,115(6):1089-1096.
doi: 10.1002/jcb.24743
[27] Li Z, Yao S J, Alini M , et al. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A, 2010,16(2):575-584.
doi: 10.1089/ten.tea.2009.0262
[28] Liu J, Zhao Z, Li J , et al. Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J Cell Biochem, 2009,107(2):224-232.
doi: 10.1002/jcb.22118
[29] Liu J, Zou L, Wang J , et al. Hydrostatic pressure promotes Wnt10b and Wnt4 expression dependent and independent on ERK signaling in early-osteoinduced MSCs. Biochem Biophys Res Commun, 2009,379(2):505-509.
doi: 10.1016/j.bbrc.2008.12.087
[30] Haasper C, Jagodzinski M, Drescher M , et al. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol, 2008,59(6):355-363.
doi: 10.1016/j.etp.2007.11.013 pmid: 18222075
[31] Nam H Y, Pingguan-Murphy B, Amir A A , et al. The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions. Biomech Model Mechanobiol, 2015,14(3):649-663.
doi: 10.1007/s10237-014-0628-y
[32] Leong W S, Wu S C, Pal M , et al. Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. J Tissue Eng Regen Med, 2012,6(S3):s68-79.
doi: 10.1002/term.v6.S3
[33] Wu Y, Zhang X, Zhang P , et al. Intermittent traction stretch promotes the osteoblastic differentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect Tissue Res, 2012,53(6):451-459.
doi: 10.3109/03008207.2012.702815
[34] Xiao W L, Zhang D Z, Fan C H , et al. Intermittent stretching and osteogenic differentiation of bone marrow derived mesenchymal stem cells via the p38MAPK-osterix signaling pathway. Cell Physiol Biochem, 2015,36(3):1015-1025.
doi: 10.1159/000430275
[35] Chen Z, Luo Q, Lin C , et al. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Bioengineering (Basel), 2015,468(1-2):21-26.
[36] Zhang C, Li L, Jiang Y , et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. Faseb J, 2018, fj201700208RR.
[37] Xue L, Li Y, Chen J . Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol Med Rep, 2017,15(5):3011-3018.
doi: 10.3892/mmr.2017.6357 pmid: 5428749
[38] Chen G, Xu R, Zhang C , et al. Responses of MSCs to 3D scaffold matrix mechanical properties under oscillatory perfusion culture. ACS Appl Mater Interfaces, 2017,9(2):1207-1218.
doi: 10.1021/acsami.6b10745
[39] Tang X, Teng S, Liu C , et al. Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. J Biomed Mater Res A, 2017,105(12):3445-3455.
doi: 10.1002/jbm.a.v105.12
[40] Becquart P, Cruel M, Hoc T , et al. Human mesenchymal stem cell responses to hydrostatic pressure and shear stress. Eur Cell Mater, 2016,31:160-173.
doi: 10.22203/eCM.v031a11 pmid: 26895242
[41] Qiu Y, Lei J, Koob T J , et al. Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med, 2016,10(12):989-999.
doi: 10.1002/term.v10.12
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[4] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[5] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[6] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[7] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[8] 郑妍,姚欢,杨珂. SFRP5抑制BMP9诱导人脐带间充质干细胞成骨分化的实验研究 *[J]. 中国生物工程杂志, 2018, 38(7): 7-13.
[9] 袁雅红, 赵珊珊, 王小莉, 腾智平, 李东升, 曾毅. HIV-1 Tat蛋白抑制骨髓间充质干细胞的造血支持功能[J]. 中国生物工程杂志, 2017, 37(6): 1-8.
[10] 李莉莉, 魏琦岩, 王艳芳, 何忠梅, 郜玉刚, 马吉胜. FGF/FGFR信号调控成骨细胞分化的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 107-113.
[11] 曹俊杰, 李爱芳, 卫亚琳, 廉静, 唐敏. Notch信号参与BMP4诱导的间充质干细胞成骨分化及其机制的初步探讨[J]. 中国生物工程杂志, 2017, 37(4): 48-55.
[12] 陈文杰, 汪建样, 殷明, 殷嫦嫦. 人脐带间充质干细胞抗肿瘤机制的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 78-82.
[13] 赵正德, 陈振银, 张慧楠, 龚剑萍, 许少丹, 罗忠礼. 自组装短肽水凝胶支架三维培养环境对骨髓间充质干细胞生物学特性及心肌方向分化的影响[J]. 中国生物工程杂志, 2017, 37(11): 45-51.
[14] 徐丽, 吉彩霞, 刘晓骅, 喻婷婷, 罗进勇. DLX1对BMP9诱导的间充质干细胞C3H10T1/2成骨分化的影响[J]. 中国生物工程杂志, 2017, 37(10): 8-15.
[15] 毛开云, 范月蕾, 王跃, 陆娇, 陈大明. 间充质干细胞治疗产品开发现状与趋势[J]. 中国生物工程杂志, 2017, 37(10): 126-135.