Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (7): 89-95    DOI: 10.13523/j.cb.20140714
综述     
谷胱甘肽生物合成及代谢相关酶的研究进展
王玮玮1,2, 唐亮2, 周文龙2, 杨燕2, 高波1,2, 赵云峰1, 王伟2
1. 曲阜师范大学生命科学学院 曲阜 273165;
2. 中国医学科学院药物研究所 天然药物活性物质与功能国家重点实验室 北京 100050
Progress in the Biosynthesis and Metabolism of Glutathione
WANG Wei-wei1,2, Tang Liang2, ZHOU Wen-long2, YANG Yan2, GAO Bo1,2, ZHAO Yun-Feng1, WANG Wei2
1. College of Life Science, Qufu Normal University, Qufu 273165, China;
2. State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
 全文: PDF(405 KB)   HTML
摘要:

谷胱甘肽是广泛存在于生物体内的一个含有γ-肽键的生物活性三肽,其中游离的巯基是其活性中心。在生物体内谷胱甘肽主要是由GSH I和GSH II两个酶依次催化合成,而GSH I和GSH II的进化过程复杂,由此衍生出多条生物合成途径,其代谢过程在不同生物体内也复杂多样。本文主要综述了谷胱甘肽生物合成及代谢相关酶的研究进展和利用基因工程手段提高胞内谷胱甘肽含量的策略。

关键词: 谷胱甘肽生物合成基因工程    
Abstract:

Glutathione (γ-L-glutamyl-L-cysteinylglycine, GSH), a tripeptide composed of glutamate, cysteine and glycine, is the most abundant non-protein thiol compound widely distributed in living organisms. There are too many papers on biosynthesis of glutathione. Glutathione is mainly synthesized by the consecutive action of γ-glutamylcysteine synthetase (GSH I)and glutathione synthetase (GSH II), whose evolutionary history is more complex than anticipated. Many organisms without GSH I or GSH II were proved to have the other biosynthetic patheways used to produce glutathione, while they also have complex metabolic pathway. This review summarizes the advance of the biosynthetic pathways and metabolisms of glutathione and the strategies to improve the intracellular level of glutathione using genetic engineering.

Key words: Glutathione    Biosynthesis    Genetic engineering
收稿日期: 2014-04-15 出版日期: 2014-07-25
ZTFLH:  Q814  
基金资助:

国家“重大新药创制”科技重大专项(2012ZX09301002),国家自然科学基金(30772677,81072562)资助项目

通讯作者: 王伟     E-mail: wwang@imm.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王玮玮, 唐亮, 周文龙, 杨燕, 高波, 赵云峰, 王伟. 谷胱甘肽生物合成及代谢相关酶的研究进展[J]. 中国生物工程杂志, 2014, 34(7): 89-95.

WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione. China Biotechnology, 2014, 34(7): 89-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140714        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I7/89


[1] Hopkins F G. On glutathione: a reinvestigation. J Biol Chem, 1929, 84(1): 269-320.

[2] Kendall E C, McKenzie B F, Mason H L. A study of glutathione. Its preparation in crystalline form and its identification. J Biol Chem, 1929, 84(2): 657-674.

[3] Kaplowitz N, Aw T Y, Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol, 1985, 25(1): 715-744.

[4] Carmel-Harel O, Storz G. Roles of the glutathione and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol, 2000, 54(1): 439-461.

[5] Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res, 2002, 2(3): 295-305.

[6] Meister A, Tate S S. Glutathione and related γ-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem, 1976, 45(1): 559-604.

[7] Meister A, Anderson M E. Glutathione. Annu Rev Biochem, 1983, 52(1): 711-760.

[8] Jones D P. Redefining oxidative stress. Antioxid Redox Signal, 2006, 8(9-10): 1865-1879.

[9] Bock K W, Lilienblum W, Fischer G, et al. The role of conjugation reactions in detoxication. Arch Toxicol, 1987, 60(1-3): 22-29.

[10] Ketterer B, Coles B, Meyer D J. The role of glutathione in detoxication. Environ Health Perspect, 1983, 49: 59.

[11] Orlowski M, Meister A. The γ-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci U S A, 1970, 67(3): 1248-1255.

[12] Pallardó F V, Markovic J, García J L, et al. Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med, 2009, 30(1): 77-85.

[13] Hall A G. The role of glutathione in the regulation of apoptosis. Eur J Clin Invest, 1999, 29(3): 238-245.

[14] Liu R M, Gaston Pravia K A. Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med, 2010, 48(1): 1-15.

[15] Forman H J, Fukuto J M, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol, 2004, 287(2): C246-256.

[16] Chen L, Patel R P, Teng X, et al. Mechanisms of cystic fibrosis transmembrane conductance regulator activation by S-nitrosoglutathione. J Biol Chem, 2006, 281(14): 9190-9199.

[17] Dröge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc, 2000, 59(4): 595-600.

[18] Hopkins F G. On an autoxidisable constituent of the cell. Biochem J, 1921, 15(2): 286-305.

[19] Harington C R, Mead T H. Synthesis of glutathione. Biochem J, 1935, 29(7): 1602-1611.

[20] Soomets U, Zilmer M, Langel U. Manual solid-phase synthesis of glutathione analogs: a laboratory-based short course. Methods Mol Biol, 2005, 298:241-257.

[21] Bloch K. The synthesis of glutathione in isolated liver. J Biol Chem, 1949, 179(3): 1245-1254.

[22] Richman PG, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem, 1975, 250(4): 1422-1426.

[23] Copley S D, Dhillon J K. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol, 2002, 3(5): 1-16.

[24] Meister A. Glutathione metabolism and its selective modification. J Biol Chem, 1988, 263(33): 17205-17208.

[25] Yan N, Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem, 1990, 265(3): 1588-1593.

[26] Huang C S, Anderson M E, Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem, 1993, 268(27): 20578-20583.

[27] Gipp J J, Chang C, Timothy M R. Cloning and nucleotide sequence of a full-length cDNA for human liver γ-glutamylcysteine synthetase. Biochem Biophys Res Commun, 1992, 185(1): 29-35.

[28] Gipp J J, Bailey H H, Mulcahy R T. Cloning and sequencing of the cDNA for the light subunit of human liver γ-Glutamylcysteine synthetase and relative RNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun, 1995, 206(2): 584-589.

[29] Seelig G F, Simondsen R P, Meister A. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem, 1984, 259(15): 9345-9347.

[30] Huang C S, Chang L S, Anderson M E, et al. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem, 1993, 268(26): 19675-19680.

[31] Dalton T P, Chen Y, Schneider S N, et al. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med, 2004, 37(10): 1511-1526.

[32] Newton G L, Arnold K, Price M S, et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol, 1996, 178(7): 1990-1995.

[33] Gopal S, Borovok I, Ofer A, et al. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol, 2005, 187(11): 3839-3847.

[34] Janowiak B E, Griffith O W. Glutathione Synthesis in Streptococcus agalactiae one protein accounts for γ-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem, 2005, 280(12): 11829-11839.

[35] Vergauwen B, De Vos D, Van Beeumen J J. Characterization of the bifunctional γ-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J Biol Chem, 2006, 281(7): 4380-4394.

[36] Veeravalli K, Boyd D, Iverson B L, et al. Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol, 2011, 7(2): 101-105.

[37] Spector D, Labarre J, Toledano M B. A Genetic Investigation of the Essential Role of Glutathione mutations in tne proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem, 2001, 276(10): 7011-7016.

[38] Lehmann C, Doseeva V, Pullalarevu S, et al. YbdK is a carboxylate-amine ligase with a γ-glutamyl: Cysteine ligase activity: Crystal structure and enzymatic assays. Proteins, 2004, 56(2): 376-383.

[39] Johnson T, Newton G L, Fahey R C, et al. Unusual production of glutathione in Actinobacteria. Arch Microbiol, 2009, 191(1): 89-93.

[40] Elskens MT, Jaspers CJ, Penninckx MJ. Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol, 1991, 137(3):637-644.

[41] Ganguli D, Kumar C, Bachhawat A K. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics, 2007, 175(3): 1137-1151.

[42] Wellner V P, Sekura R, Meister A, et al. Glutathione synthetase deficiency, an inborn error of metabolism involving the γ-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria). Proc Natl Acad Sci USA, 1974, 71(6): 2505-2509.

[43] Jaspers C J, Gigot D, Penninckx M J. Pathways of glutathione degradation in the yeast Saccharomyces cerevisiae. Phytochemistry, 1985, 24(4): 703-707.

[44] Breslow E, Meister A. The amino acid sequence of rat kidney 5-oxo-L-prolinase determined by cDNA cloning. J Biol Chem, 1996, 271(50): 32293-32300.

[45] Li Y, Wei G, Chen J. Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol, 2004, 66(3): 233-242.

[46] Liao X Y, Shen W, Chen J, et al. Improved glutathione production by gene expression in Escherichia coli. Lett Appl Microbiol, 2006, 43(2): 211-214.

[47] Fei L, Wang Y, Chen S. Improved glutathione production by gene expression in Pichia pastoris. Bioproc Biosyst Eng, 2009, 32(6): 729-735.

[48] Kiriyama K, Hara K Y, Kondo A. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Appl Microbiol Biot, 2012, 96(4): 1021-1027.

[49] Fan X, He X, Guo X, et al. Increasing glutathione formation by functional expression of the γ-glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotechnol Lett, 2004, 26(5): 415-417.

[50] Murata K, Kimura A. Cloning of a gene responsible for the biosynthesis of glutathione in Escherichia coli B. Appl Environ Microb, 1982, 44(6): 1444-1448.

[51] Gushima H, Miya T, Murata K, et al. Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. J Appl Biochem, 1982, 5(1-2): 43-52.

[52] Li W, Li Z, Yang J, et al. Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. J biotechnol, 2011, 154(4): 261-268.

[53] Ge S, Zhu T, Li Y. Expression of Bacterial GshF in Pichia pastoris for Glutathione Production. Appl Environ Microb, 2012, 78(15): 5435-5439.

[54] Li Y, Hugenholtz J, Sybesma W, et al. Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biot, 2005, 67(1): 83-90.

[55] Alfafara C G, Kanda A, Shioi T, et al. Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biot, 1992, 36(4): 538-540.

[56] Wen S, Zhang T, Tan T. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzyme Microb Tech, 2004, 35(6): 501-507.

[57] Gutiérrez-Alcalá G, Gotor C, Meyer A J, et al. Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci U S A, 2000, 97(20): 11108-11113.

[58] Ask M, Mapelli V, Höck H, et al. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact, 2013, 12(87).

[59] Suzuki T, Yokoyama A, Tsuji T, et al. Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng, 2011, 112(2): 107-113.

[60] Hara K Y, Kiriyama K, Inagaki A, et al. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microb Biot, 2012, 94(5): 1313-1319.

[61] Ballatori N, Hammond C L, Cunningham J B, et al. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharm, 2005, 204(3): 238-255.

[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[10] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[11] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[12] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[13] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.