Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 127-132    DOI: 10.13523/j.cb.20140419
综述     
L-精氨酸产生菌的分子育种
张斌1, 陈进聪2, 万方1, 陈民良2, 杨慧林1, 陈雪岚1
1. 江西师范大学功能有机小分子教育部重点实验室 生命科学学院 南昌 330022;
2. 南昌大学食品科学与技术国家重点实验室 南昌 330047
Progress of Molecular Breeding in L-arginine Producing Strains
ZHANG Bin1, CHEN Jin-cong2, WAN Fang1, CHEN Min-liang2, YANG Hui-lin1, CHEN Xue-lan1
1. Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Life Science, JiangXi Normal University, Nanchang 330022, China;
2. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
 全文: PDF(550 KB)   HTML
摘要:

L-精氨酸是一种非常重要的半必需氨基酸,其作为生物体生成NO的前体,参与尿素循环,对人和动物均具有重要的生理功能。现阶段生产精氨酸的主流方法是微生物发酵法,因此,如何快速、高效地选育精氨酸高产菌种成为业内关注的焦点。主要对精氨酸产生菌分子育种方法的最新研究进展进行了综述,并就目前存在的问题和发展方向进行了探讨。

关键词: L-精氨酸分子育种代谢工程基因组尺度网络    
Abstract:

L-Arginine, a semi-essential amino acid, has lately attracted considerable attention because the amino acid has been shown to be a precursor to nitric oxide (NO), a key component of endothelium-derived relaxing factor. Currently, L-arginine is primarily produced by microbial fermentation, and thus rapid and efficient breeding of arginine high-yield strains has become the focus in industry. The progress of breeding methods for arginine-producing strains was reviewed, and the current problems and perspectives on molecular breeding methods were discussed.

Key words: L-arginine    Molecular breeding    Metabolic engineering    Genome-scale metabolic network
收稿日期: 2013-11-19 出版日期: 2014-04-25
ZTFLH:  Q812  
基金资助:

国家自然科学基金资助项目(31360219,30960012)

通讯作者: 陈雪岚     E-mail: xuelanchen162@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张斌, 陈进聪, 万方, 陈民良, 杨慧林, 陈雪岚. L-精氨酸产生菌的分子育种[J]. 中国生物工程杂志, 2014, 34(4): 127-132.

ZHANG Bin, CHEN Jin-cong, WAN Fang, CHEN Min-liang, YANG Hui-lin, CHEN Xue-lan. Progress of Molecular Breeding in L-arginine Producing Strains. China Biotechnology, 2014, 34(4): 127-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140419        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/127


[1] Raber P, Ochoa A C, Rodríguez P C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunological Investigations, 2012,41(6-7): 614-634.

[2] Gholami M, Boughton B A, Fakhari A R, et al. Metabolomic study reveals a selective accumulation of L-arginine in the d-ornithine treated tobacco cell suspension culture. Process Biochemistry, 2014,49(1): 140-147.

[3] Wu G, Bazer F W, Davis T A, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 2009,37(1): 153-168.

[4] Durzan D J. Arginine, scurvy and Cartier's "The Tree of Life". Journal of Ethnobiology and Ethnomedicine, 2009,5(1): 5.

[5] Sancho-Vaello E, Fernández-Murga M L, Rubio V. Functional dissection of N-acetylglutamate synthase (ArgA) of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity. Journal of Bacteriology, 2012,194(11): 2791-2801.

[6] Glansdorff N, Xu Y. Microbial arginine biosynthesis: pathway, regulation and industrial production.In:Wendisch V F. Amino Acid Biosynthesis-Pathways, Regulation and Metabolic Engineering. Heidelberg:Springer-Verlag, 2007. 219-257.

[7] Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiology and Molecular Biology Reviews, 2007,71(1): 36-47.

[8] 陈雪岚, 熊勇华, 陶文沂,等. 野生型与突变型钝齿棒杆菌生物合成精氨酸基因簇arg JBDFR的生物信息学比较. 食品科学, 2007, 28(3): 219-222. Chen X L,Xiong Y H,Tao W Y,et al. Informatics comparisons of arginine biosynthetic argCJBDFR gene cluster from C.crenatum A.S 1.542 and C.crenatum A.S.M2.Food Science, 2007, 28(3): 219-222.

[9] Qu Q, Morizono H, Shi D, et al. A novel bifunctional N-acetylglutamate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase. BMC Biochemistry, 2007, 8(1): 4.

[10] Morizono H, Cabrera-Luque J, Shi D, et al. Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. Journal of Bacteriology, 2006,188(8): 2974-2982.

[11] 徐美娟. 钝齿棒杆菌 SYPA5-5 发酵产L-精氨酸的代谢工程改造. 无锡:江南大学, 2012. Xu M.Metabolic engineering of Corynebacterium crenatum SYPA5-5 for the L-arginine production. Wusi:Jiangnan University,2012.

[12] Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Current Opinion in Biotechnology, 2012, 23(4): 631-640.

[13] Schneider J, Niermann K, Wendisch V F. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology, 2011, 154(2-3): 191-198.

[14] 李小曼, 赵智, 张英姿, 等. γ-谷氨酰激酶基因敲除对产 L-精氨酸钝齿棒杆菌 8-193 生理代谢的影响. 微生物学报, 2011, 51(11): 1476-1484. Li X M,Zhao Z, Zhang Y Z,et al.Effect of gamma-glutamyl kinase gene knock-out on metabolism in L-arginine-producing strain Corynebacterium crenatum 8-193.Acta Microbiologica Sinica, 2011, 51(11): 1476-1484.

[15] Xu M, Rao Z, Yang J, et al. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum. Current Microbiology, 2013, 67(3): 271-278.

[16] Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2011,163(6): 707-719.

[17] Dou W, Xu M, Cai D, et al. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2011,165(3-4): 845-855.

[18] Xu M, Rao Z, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC~ H cluster from Corynebacterium crenatum for improvement of L-arginine production. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 495-502.

[19] Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43(1): 255-266.

[20] Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Applied and Environmental Microbiology, 2009, 75(6): 1635-1641.

[21] 陈雪岚, 汤立, 焦海涛, 等. 钝齿棒杆菌argR基因缺失株构建及其缺失对精氨酸生物合成途径相关基因转录水平的影响. 微生物学报, 2013, 1: 020. Chen X L,Tang L,Jiao H T,et al. Construction of Corynebacterium crenatum AS 1.542ΔargR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway. Acta Microbiologica Sinica, 2013,1: 020.

[22] Vold Korgaard Jensen J, Wendisch V F. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microbial Cell Factories, 2013,12(1):63.

[23] Tyo K E, Ajikumar P K, Stephanopoulos G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnology, 2009, 27(8): 760-765.

[24] Becker J, Zelder O, Hfner S, et al. From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 2011, 13(2): 159-168.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[6] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[7] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[8] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[9] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[10] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[11] 杨艳萍, 董瑜, 袁建霞, 邢颖. 水稻分子育种技术专利分析[J]. 中国生物工程杂志, 2016, 36(9): 110-118.
[12] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.
[13] 李晓波, 刘雪, 赵广荣. 微生物合成黄酮糖苷类天然产物研究进展[J]. 中国生物工程杂志, 2016, 36(8): 105-112.
[14] 高翠娟, 连思琪, 祁庆生. 代谢工程构建重组耶氏解脂酵母生产中长链聚羟基脂肪酸酯[J]. 中国生物工程杂志, 2016, 36(5): 53-58.
[15] 梁欣泉, 李宁, 任勤, 刘继栋. 代谢工程改造酿酒酵母生产L-乳酸的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 109-114.