Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (9): 94-104    DOI: 10.13523/j.cb.20150914
综述     
植物重金属胁迫耐受机制
李洋, 于丽杰, 金晓霞
哈尔滨师范大学生命科学与技术学院 哈尔滨 150025
Mechanism of Heavy Metal Tolerance Stress of Plants
LI Yang, YU Li-jie, JIN Xiao-xia
College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
 全文: PDF(656 KB)   HTML
摘要:

重金属是一类会对植物产生毒害作用的污染物,植物在长期进化过程中演变出耐受重金属胁迫的相关机制.以植物重金属耐受性为基础,对近几年来国内外植物响应重金属胁迫的耐受机制研究作一简要综述.主要概述了重金属对植物的胁迫影响及植物抗氧化系统,脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质和不同类型基因家族等方面对植物耐受重金属胁迫机制的研究进展.以期为提高植物耐重金属胁迫能力及研究植物修复重金属污染土壤的应用奠定一定的基础.

关键词: 植物重金属胁迫抗氧化系统渗透调节物质基因家族    
Abstract:

Heavy metals are a class of pollutants that may produce certainly toxic actions towards plants, plants have evolved mechanisms of heavy metal stress tolerance in long-term evolution. Based on plant heavy metal tolerance, making a brief overview that the study of tolerance mechanisms of plant response to heavy metal stress at home and abroad in recent years. The molecular mechanism that stress effects of heavy metals on plants, plant antioxidant systems, osmotic adjustment substance including proline, soluble sugar or protein, and different types of gene families under heavy metal are mainly discussed. In order to improve the ability of plant resistance to heavy metals and help phytoremediation.

Key words: Plant    Heavy metals stress    Antioxidant systems    Osmotic adjustment substance    Gene families
收稿日期: 2015-05-14 出版日期: 2015-09-25
ZTFLH:  Q19  
基金资助:

黑龙江省教育厅面上项目(12531178,12531204),"植物生物学"黑龙江省高校重点实验室开放课题(ZK201205),黑龙江省普通高等学校青年学术骨干支持计划资助项目

通讯作者: 金晓霞     E-mail: xiaoxia6195@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志, 2015, 35(9): 94-104.

LI Yang, YU Li-jie, JIN Xiao-xia. Mechanism of Heavy Metal Tolerance Stress of Plants. China Biotechnology, 2015, 35(9): 94-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150914        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I9/94


[1] 李进学, 曹虎, 张芬琴, 等. Cu2+和Zn2+对普通小麦幼苗生长的影响. 植物资源与环境学报, 2005, 14 (4) : 59-60. Li X J, Cao H, Zhang F Q, et al. Effects of Cu2+ and Zn2+ on growth of Triticum aestivum seedling. Journal of Plant Resourcesand Environmen, 2005, 14 (4) : 59-60.

[2] 谭九洲, 黄迎波. 植物重金属耐受分子机理的研究进展. 安徽农业科学, 2014, 42 (35) : 12782-12785. Tan J Z, Huang Y B. Research progress of the molecular mechanism of heavy metal tolerance of plant. Journal of Anhui Agri Sci, 2014, 42 (35) : 12782-12785.

[3] 马生军, 程新宇, 谢景, 等. 锰营养对甘草光合特性和抗氧化酶活性的影响,现代中药研究与实践, 2014, 18 (6) : 7-10. Ma S J, Cheng X Y, Xie J, et al. Effect of different concentration of mn on photosynthetic characteristics and antioxidase activities of Glycyrrhiza uralensis fisch, Antioxidase Activities of Glycyrrhiza uralensis Fisch. Chin Med J Res Prac, 2014, 18 (6) : 7-10.

[4] 侯明, 陈国勇, 梁福晓, 等. 钒胁迫对水稻幼苗生理生化和富集特性的影响, 生态环境学报, 2014, 23 (10) : 1657-1663. Hou M, Chen G Y, Liang X F, et al. Effects of vanadium stress on physiological, biochemical characteristics and enrichment characteristics of rice seedlings. Ecology and Environmental Sciences, 2014, 23 (10) : 1657-1663.

[5] 刘涛. Cd胁迫下桐花树幼苗的解剖结构响应及镉的累积分布变化. 厦门: 厦门大学, 生命科学学院,2012. Liu T. The Response of Anatomy and Cadmium Accumulation Distribution Changes in Aegiceras Corniculatum Seedlings under Cd Stress. Xiamen : Xiamen University, School of Life Sciences,2012.

[6] González-Mendoza D, Espadas y Gil F, Escoboza-Garcia F, et al. Copper stress on photosynthesis of black mangle (Avicennia germinans). Annals of the Brazilian Academy of Sciences, 2013, 85 (2) : 665-670.

[7] 丁刚, 吴海一, 吕芳, 等. Fe3+对鼠尾藻光合呼吸作用和生化组成的影响. 水产养殖, 2014, 25 (10) : 21-26. Ding G, Wu H Y, Lv F, et al. The effects of Fe3+on photosynthesis, respiration and biochemical composition of Sargassum thunbergii. Journal of Aquaculture, 2014, 25 (10) : 21-26.

[8] 张凯, 徐波, 孟昭军, 等. 铜、镉胁迫对杨树叶片中防御蛋白活性的影响. 东北林业大学学报, 2014, 42 (11) : 43-46. Zhang K, Xu B, Meng Z J, et al. Effect of copper and cadmium on defensive protein activity in Poplar leaves. Journal of Northeast Forestry University, 2014, 42 (11) : 43-46.

[9] Minglin L, Yuxiu Z, Tuanyao C. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene, 2005, 363 (1) : 151-158.

[10] Romero-Puertas M C, Corpas F J, Rodriguez-Serrano M, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol, 2007, 164 (10) : 1346-1357.

[11] Brahim L, Mohamed M. Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex halimus. African Journal of Biotechnology, 2011, 10 (50) : 10143-10148.

[12] 崔宏莉, 解静芳, 杨彪, 等.污灌与镉胁迫对菠菜几种抗氧化酶活性的影响. 生态毒理学报, 2010, 5 (2) : 274-279. Cui H L, Xie J F, Yang B. Effects of sewage irrigation and cadmium stresses on the activities of several antioxidant enzymes of spinach. Asian Journal of Ecotoxicology, 2010, 5 (2) : 274-279.

[13] Huang H, Gupta D K, Tian S, et al. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environ Sci Pollut Res, 2012,19 (5) : 1640-1651.

[14] 张玉秀, 金 玲, 冯珊珊, 等. 镉对镉超累积植物龙葵抗氧化酶活性及基因表达的影响,中国科学院研究生院学报, 2013, 30 (1) : 11-17. Zhang Y X, Jin L, Feng S S, et al. Effects of Cd on activity and gene expression of antioxidant enzymes in hyperaccumulator Solanum nigrum L. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30 (1) : 11-17.

[15] Potters G, Horemans N, Jansen M A. The cellular redox state in plant stress biologya charging concept. Plant Physiol Biochem, 2010, 48 (5) : 292-300.

[16] Wójcik M, Tukiendorf A. Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plantarum, 2011, 55 (1) : 125-132.

[17] 张宏杰. 铜、铅胁迫对红花生长发育及GSH表达的影响. 河南: 河南师范大学, 生命科学学院,2013. Zhang H J. Effects of Copper and Lead Stress on the Growth and Development and the Expession of Glutathione in Safflower. Henan: Henan Normal University, School of Life Sciences,2013.

[18] 齐君, 吕金印, 李鹰翔, 等. Cr3+胁迫对青菜中植物络合素含量及AsA-GSH 代谢关键酶活性的影响. 农业环境科学学报, 2012, 31 (7) : 1303-1309. Qi J, Lv J Y, Li Y X, et al. Effects of chromium stress on the content of phytochelatins and the activities of key enzymes of ascorbate-glutathione cycle in Brassica chinensis L. Journal of Agro-Environment Science, 2012, 31 (7) : 1303-1309.

[19] 张浩,陆宁,钱晓刚,等.不同类型土壤重金属胁迫对烟叶脯氨酸含量的影响. 贵州农业科学, 2014, 42 (1) : 127-131. Zhang H, Lu N, Qian X G, et al. Effects of different concentrations of heavy metals on tobacco proline content in four soil types. Guizhou Agricultural Sciences, 2014, 42 (1) : 127-131.

[20] Gohari M, Habib-Zadeh A R, Khayat M. Assessing the intensity of tolerance to lead and its effect on amount of protein and proline in root and aerial parts of two varieties of rape seed (Brassica napus L.). Journal of Basic and Applied Scientific Research, 2012, 2 (1) : 935-938.

[21] John R, Ahmad P, Gadgil K, et al. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production, 2009, 3 (3) :65-76.

[22] Fidalgo F, Azenha M, Silva A F, et al. Copper-induced stress in Solanum nigrum L. and antioxidant defense systemresponse. Food and Energy Security, 2013, 2 (1) :70-80.

[23] Handique G K, Handique A K. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. Journal of Environmental Biology, 2009, 30 (2) :299-302.

[24] Zhang J T, Xu M, Han K, et al. Effect of salt stress on plant nutrition and physiology of tamato seedings.Acta Agriculturae Bore-ali-occidentali Sinica, 2011, 20 (2) : 128-133.

[25] 阮晨, 陈晓明, 刘小玲, 等. 4 种草坪植物成苗期Co(Ⅱ)耐受性综合评价, 核农学报, 2015, 29 (4):777-785. Ruan C, Chen X M, Liu X L, et al. Effects of salinity stress on growth an organic osmolytes accumulation of callus and tissue culture seedlings of two malus. Journal of Nuclear Agricultural Sciences, 2015, 29 (4) :777-785.

[26] 丁晓辉,任丽萍,张春荣, 等. Cd2+胁迫对紫花苜蓿叶绿素和可溶性糖含量的影响. 华北农学报, 2007, 22 (增刊) : 64-66. Ding X H, Ren L P, Zhang C R, et al. Effect of Cd2+ stress on the content of chlorophyll and soluble sugar of alfalfa. Acta Agriculturae Boreali-Sinica, 2007, 22 (Suppl) : 64-66.

[27] 张呈祥. 六种地被植物对镉、铅胁迫的响应及积累特性. 山东: 山东农业大学, 资源与环境学院,20112. Zhang C X. Stress responses and accumulation of cadium and lead by six kings of groundcover plants. Shandong : Shandong Agricultural University, College of Resources and Environment,2012.

[28] Margoshes M, Vallee B L. A cadmium protein from equine kidney cortex, Journal of the American Chemical Society, 1957, 79 (17) : 4813–4814.

[29] Du J, Yang J L, Li C H. Advances in metallotionein studies in forest trees. Plant OMICS, 2012, 5 (1) : 46-51.

[30] Lane B, Kajioka R, Kennedy T. The wheat-germ Ec protein is a zinc-containing metallothionein, Biochem Cell Biol, 1987, 65 (11) : 1001-1005.

[31] Lv Y Y, Deng X P, Quan L T, et al. Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil, 2013, 367 (1-2) : 507-519.

[32] Turchia A, Tamantinib I, Camussia A M, et al. Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Science, 2012, 183 (1) : 50-56.

[33] Xia Y, Qi Y, Yuan Y X, et al. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. Journal of Hazardous Materials, 2012, 233-234 (1) : 65-71.

[34] Ferraz P, Fidalgo F, Almeida A, et al. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved. Plant Physiology and Biochemistry, 2012, 57 (1) : 254-260.

[35] Kim Y O, Patel D H, Lee D S, et al. High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco bioscience. Biosci Biotechnol Biochem, 2011, 75 (10) : 1912-1920.

[36] Kim Y O, Jung S, Kim K, et al. Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress plant. Physiol Biochem, 2013, 64 (1) : 25-32.

[37] Sekhar K, Priyanka B, Reddy V D, et al. Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environmental and Experimental Botany, 2011, 72 (2) : 131-139.

[38] Nezhad R M, Shahpiri A, Mirlohi A. Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J, 2013, 32 (2) : 131-137.

[39] Guo J L, Xu L P, Su Y C, et al. ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. BioMed Research International, 2013, 1 (1) : 1-12.

[40] Manara A. Plant responses to heavy metal toxicity. Plants and Heavy Metals, 2012, 2 (1) : 27-53.

[41] Gupta D K, Vandenhove H, Inouhe M. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. Heavy Metal Stress in Plants, 2013, 1 (1) : 73-94.

[42] Heiss S, Wachter A, Bogs J, et al. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany, 2003, 54 (389) : 1833-1839.

[43] Szalai G, Krantev A, Yordanova R, et al. Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turkish Journal of Botany, 2013, 37 (4) : 708-714.

[44] Batista B L, Nigar M, Mestrot A, et al. Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. The Journal of Experimental Botany, 2014, 65 (6): 1467-1479.

[45] Guo J B, Xu W Z, Ma M. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 2012, 1 (199-200) : 309-313.

[46] Gaillard S, Jacquet H, Vavasseur A, et al. AtMRP6 AtABCC6 an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008, 8 : 1-11.

[47] Chen S X, Sánchez-Fernández R, Lyver E R, et al. Functional Characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. The Journal of Biological Chemistry, 2007, 282 (29) : 21561-21571.

[48] 邵若玄, 沈忆珂, 周文彬, 等. 植物ATP结合盒(ABC)转运蛋白研究进展. 浙江农林大学学报, 2013, 30 (5) : 761-768. Shao R X, Shen Y K, Zhou W B, et al. Recent advances for plant ATP-binding cassette transporters. Journal of Zhejiang Forest University, 2013, 30 (5) : 761-768.

[49] Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in arabidopsis. Plant Physiol, 2005, 138 (2) : 827-836.

[50] 金枫, 王翠, 林海建, 等. 植物重金属转运蛋白研究进展. 应用生态学报, 2010, 21 (7) : 1873-1882. Jin F, Wang C, Lin H J, et al. Heavy metal-transport proteins in plants : A review. Chinese Journal of Applied Ecology, 2010, 21 (7) : 1873-1882.

[51] Rastgoo L, Alemzadeh A, Afsharifar A. Isolation of two novel isoforms encoding zinc- and copper-transporting P1B-ATPase from gouan (Aeluropus littoralis). Journal Plant Omics, 2011, 4 (7): 377-383.

[52] Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 2009, 181 (1) : 71-78.

[53] Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ, 2012, 35 (11) : 1948-1957.

[54] Grispen M J V, Hakvoort H W J, Bliek T, et al. Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environmental and Experimental Botany, 2011, 72 (1): 71-76.

[55] Mills R F, Peaston K A, Runions J, et al. HvHMA2, a P1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. Plos One, 2012, 7 (8) : 1-14.

[56] Andrés-Colás N, Perea-Garcia A, Puig S, et al. Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiology, 2010, 153 (1) : 170-184.

[57] Wong C K E, Jarvis R S, Sherson S M, et al. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytologist, 2009, 181 (1) : 79-88.

[58] Mills R F, Francini A, Ferreira da Rocha P S, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters, 2005, 579 (3) :783-791.

[59] Satoh-Nagasawa N, Mori1 M, Nakazawa N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol, 2012, 53 (1) : 213-224.

[60] Bkgaard L, Mikkelsen M D, Sørensen D M, et al. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. The Journal of Biological Chemistry, 2010, 285 (41) : 31243-31252.

[61] Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 2009, 149 (2) : 894-904.

[62] Takahashi R, Bashir K, Ishimaru Y, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling Behavior, 2012, 7 (12) : 1605-1607.

[63] 单喆. 星星草PutCAX2在酵母中表达的功能解析. 哈尔滨: 东北林业大学, 生命科学学院,2012. Shan Z. Expression of a cation/H+ exchanger of Puccinellia tenuiflora, PutCAX2, confers Ca2+ and Ba2+ tolerance in yeast. Haerbin : Northeast Forestry University, School of Life Sciences,2012.

[64] Khoudi H, Maatar Y, Gouiaa S, et al. Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. Journal of Plant Physiology, 2012, 169 (1) : 98-103.

[65] Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytologist, 2009, 183 (1) : 95-105.

[66] Wu Q Y, Shigakib T, Williamsa K A, et al. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. Journal of Plant Physiology, 2011, 168 (2) : 167-173.

[67] Krämer U, Talke I N, Hanikenne M. Transition metal transport. FEBS Lett, 2007, 581 (12) : 2263-2272.

[68] Yuan L Y, Yang S G, Liu B X, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep, 2012, 31 (1) : 67-79.

[69] Muthukumar B, Yakubov B, Salt D E. Transcriptional activation and localization of expression of Brassica juncea putative metal transport protein BjMTP1. BMC Plant Biology 2007, 7 (32) : 1-12.

[70] 龚红梅, 沈野. 植物对重金属锌耐性机理的研究进展. 西北植物学报, 2010, 30(3):633-644. Gong H M, Shen Y. Research progress in mechanisms of plant tolerance to zinc, Acta Bot Boreal-Occident Sin, 2010, 30(3):633-644.

[71] Gustin J L, Loureiro M E, Kim D, et al. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. The Plant Journal, 2009, 57 (6) : 1116-1127.

[72] Kawachi M, Kobae Y, Mori H, et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol, 2009, 50 (6) : 1156-1170.

[73] Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J, 2010, 107 (22) : 10296-10301

[74] 郝梦雨, 印度荠菜 BjCRP1 基因的克隆、表达与抗逆性分析. 河北 : 河北农业大学, 生命科学学院,2010. Hao M Y. Cloning, expression and stress resistance analysis of BjCRP1 gene from Brassica juncea L. Hebei : Agricultural University of Hebei Province, School of Life Sciences,2012.

[75] Thomine S, Wang R, Ward J M, et al. Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA, 2000, 97 (9) : 4991-4996.

[76] Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal, 2003, 34 (5) : 685-695.

[77] Nishida S, Tsuzuki C, Kato A, et al. AtIRT1, the primary ironuptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol, 2011, 52 (8) : 1433-1442.

[78] Assunçãoa A G L, Herreroa E, Lina Y F, et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 2010, 107 (22) : 10296-10301.

[79] Lin Y F, Liang H M, Yang S Y, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 2009, 182 (2) : 392-404.

[80] Suzuki M, Kobayashi1 T, Takahashi M, et al. OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 2005, 56 (422) : 3207-3214.

[81] Barberon M, Dubeaux G, Kolb C, et al. Polarization of iron-regulated transporter 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci USA, 2014, 111 (22) : 8293-8298.

[82] Peñarrubia L, Andrés-Colás N, Moreno J, et al. Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator. Journal of Biological Inorganic Chemistry 2010, 15 (1) : 29-36.

[83] Sancenon V, Puig S, Mateu-Andres I, et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry, 2004, 279 (15) : 15348-15355.

[84] Klaumann S, Nickolaus S D, Furst S H,et al. The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 2011, 192 (2) : 393-404.

[85] Garcia-Molina A, Andrés-Colás N, Perea-Garcia A, et al. The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant Journal, 2011, 65 (6) : 848-860.

[86] Andrés-Colás N, Perea-Garcia A, Puig S, et al. Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiology, 2010, 153 (1) : 170-184.

[87] 喻丝丝, 魏林艳, 谢华安, 等. MATE转运蛋白在水稻抗逆作用中的研究进展. 福建农业学报, 2014, 29 (4) :398-405. Yu S S, Wei L Y, Xie A H, et al. Progress on MATE transporters of stress resistance in rice. Fujian Journal of Agricultural Sciences, 2014, 29 (4) :398-405.

[88] Rogers E E, Guerinot M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell, 2002, 14 (8) : 1787-1799.

[89] 郭凡瑜. 异源表达SbMATE基因提高苜蓿耐铝特性的研究. 西南大学, 生命科学学院,2013. Guo F Y. Ectopic expression of SbMATE gene to improve the aluminum tolerance in Alfalfa. Southwest University, School of Life Sciences,2013.

[90] Yokosho K, Yamajl N, Ma J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal, 2011, 68 (6) : 1061-1069.

[91] 张建军,胥华伟,周晓垂, 等.非生物胁迫下水稻OsMATE基因表达分析. 热带亚热带植物学报, 2010, 18 (4) : 435-439. Zhang J J, Xu H W, Zhou X C, et al. Expression analysis of OsMATE in rice under abiotic stresses. Journal of Tropicaland Subtropical Botany, 2010, 18 (4) : 435-439.

[92] 王甲水. MaMATE1 基因功能的初步研究. 海南大学, 生命科学学院,2010. Wang J S, Function characterization of MaMATE1, a member of the MATE family from Musa acuminate, Hainan University, School of Life Sciences,2010.

[93] 陈安乐. 大豆发根转化方法的建立及 GmFRD3 在大豆耐铝性中的作用. 吉林大学, 植物科学学院,2014. Chen A L. Establishment of the agrobacterium rhizogenes-mediated transformation of soybean and function of GmFRD3 under Al stress in soybean. Jilin University, School of Plant Sciences,2014.

[94] Schaaf G, Ludewig U, Erenoglu B E, et al. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem, 2004, 279 (10) : 9091-9096.

[95] Curie C, Cassin G, Couch D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009, 103 (1) : 1-11.

[96] Gendre D, Czernic P, Conéjéro G, et al. TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotinamine-Ni/Fe transporter. Plant J, 2006, 49 (1) : 1-15.

[97] Krämer U, Smith R D, Wenze W W, et al. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol, 1997, 115 (4) : 1641-1650.

[98] Schaaf G, Schikora A, Häberle J, et al. A putative function for the Arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol, 2005, 46 (5) : 762-774.

[99] DiDonato R J Jr, Roberts L A, Sanderson T, et al. Arabidopsis yellow stripe-like2 (YSL2) : a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J, 2004, 39 (3) : 403-414.

[1] 刘旭霞,杨安珂. 美国SECURE规则评析及其对中国的启示[J]. 中国生物工程杂志, 2021, 41(9): 126-135.
[2] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[3] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[4] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[5] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[6] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[7] 李京霞,夏惠,吕秀兰,王进,梁东. 抗坏血酸的代谢和调控——以模式植物和园艺植物为例 *[J]. 中国生物工程杂志, 2018, 38(3): 105-114.
[8] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.
[9] 单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林. 植物铁蛋白与氧化胁迫应激[J]. 中国生物工程杂志, 2017, 37(2): 121-126.
[10] 闫鹏程, 张占江, 裴智勇, 付延婷, 陈禹保, 刘彤. 药用植物保育云服务平台设计与实现[J]. 中国生物工程杂志, 2017, 37(11): 37-44.
[11] 陈敏, 陈慧, 包海, 黄鹏, 王延伟. 植物miRNA启动子研究进展[J]. 中国生物工程杂志, 2016, 36(5): 125-131.
[12] 王旭静, 张欣, 刘培磊, 王志兴. 复合性状转基因植物的应用现状与安全评价[J]. 中国生物工程杂志, 2016, 36(4): 18-23.
[13] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[14] 扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.
[15] 初易洋, 田慧琴, 许蕙金兰, 朱本忠. 植物多基因转化研究进展[J]. 中国生物工程杂志, 2016, 36(12): 111-116.