Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 32-39    DOI: 10.13523/j.cb.20150606
研究报告     
14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能
刘静1, 骆超超2, 黄建国2, 吴迪1, 高学军2, 刘玉芬1
1. 哈尔滨师范大学生命科学与技术学院 哈尔滨 150080;
2. 东北农业大学 农业生物功能基因重点实验室 哈尔滨 150030
14-3-3γ Regulates the Physiological Function of Dairy Cow Mammary Gland Epithelial Cells Through mTOR Signaling Pathway
LIU Jing1, LUO Chao-chao2, HUANG Jian-guo2, WU Di1, GAO Xue-jun2, LIU Yu-fen1
1. College of Life Science and Technology, Harbin Normal University, Harbin 150080, China;
2. Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
 全文: PDF(1321 KB)   HTML
摘要:

14-3-3γ作为蛋白质与蛋白质之间的"桥梁蛋白",广泛参与细胞凋亡、细胞分裂、信号转导和蛋白质合成等生物体所有的重要生命活动的调节。以体外培养的荷斯坦奶牛(Vaccas)乳腺上皮细胞(dairy cow mammary gland epithelial cells, DCMECs)为模型,研究14-3-3γ对奶牛乳腺上皮细胞乳蛋白、乳脂合成的影响。瞬时和稳定转染pGCMV/IRES/EGFP/14-3-3γ即14-3-3γ过表达的奶牛乳腺上皮细胞,应用CASY细胞活力分析仪分析细胞活力的变化,测定细胞中甘油三脂(triglyceride, TG)和β-酪蛋白(β-Casein,CSN2)的合成,并且通过Western blot检测DCMECs中mTOR(mammalian target of rapamycin, mTOR)和p-mTOR的表达量,探究14-3-3γ影响奶牛乳腺上皮细胞生理功能的机制。结果显示,瞬时和稳定转染pGCMV/IRES/EGFP/ 14-3-3γ 的奶牛乳腺上皮细胞相对正常培养的奶牛乳腺上皮细胞,细胞活力极显著增强(P<0.01),CSN2和TG表达量极显著增加(P<0.01),同时mTOR和p-mTOR的表达量也显著增加(P<0.01)。研究结果表明14-3-3γ参与泌乳关键信号通路即mTOR信号通路,能够增强乳腺上皮细胞活力,促进奶牛乳腺上皮细胞CSN2和TG的合成,丰富了奶牛泌乳信号通路,为乳品质研究提供了新的理论依据。

关键词: 14-3-3&gamma奶牛乳腺上皮细胞mTOR信号通路    
Abstract:

As a linker of proteins, 14-3-3γ plays critical roles in cell signal transductions, cell growth,differentiation and protein synthesis. Based on cultured dairy cow mammary gland epithelial cells in vitro, the impact of 14-3-3γ on the physiological function of dairy cow mammary gland epithelial cells were ivestigated. Expressing plasmids of 14-3-3γ gene were constructed, then stably and transiently transfected into dairy cow mammary gland epithelial cells. The effect of over-expression on dairy cow mammary gland epithelial cells was analyzed by CASY. Triglyceride was detected by triglyceride GPO-POD assay and beta casein was detected by high performance liquid chromatography. Expression of mTOR and p-mTOR was detected by Western blot. Experimental results show that the viability of dairy cow mammary gland epithelial cells, the expression of triglyceride and β-casein, the expression of mTOR and p-mTOR was identified up-expressed(P<0.01). All above results indicated that 14-3-3γ regulates the physiological function of dairy cow mammary gland epithelial cells through mTOR signaling pathway. The result enriches the lactation signaling pathway, which provides theoretical basis for improving the quality of milk.

Key words: 14-3-3γ    Dairy cow    Mammary gland epithelial cells    mTOR    Signaling pathway
收稿日期: 2015-02-11 出版日期: 2015-06-25
ZTFLH:  Q819  
基金资助:

国家"973"计划(2011CB100804)、国家"863"计划(2013AA102504-03)资助项目

通讯作者: 刘玉芬     E-mail: liuyufen0825@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘静, 骆超超, 黄建国, 吴迪, 高学军, 刘玉芬. 14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能[J]. 中国生物工程杂志, 2015, 35(6): 32-39.

LIU Jing, LUO Chao-chao, HUANG Jian-guo, WU Di, GAO Xue-jun, LIU Yu-fen. 14-3-3γ Regulates the Physiological Function of Dairy Cow Mammary Gland Epithelial Cells Through mTOR Signaling Pathway. China Biotechnology, 2015, 35(6): 32-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150606        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/32


[1] 曾妍, 郑志红, 杨磊. 14-3-3蛋白功能研究进展. 现代肿瘤医学,2008,1(7): 1236-1238. Zeng Y, Zheng Z H, Yang L. Advance in 14-3-3 proteins function. Modern Oncology, 2008,1(7): 1236-1238.

[2] Lam T, Thomas L M, White C A, et al. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination. Plos One, 2013,8(11): 80141.

[3] Zhao J, Meyerkord C L, Du Y, et al. 14-3-3 proteins as potential therapeutic targets. Semin Cell Dev Biol, 2011,22(7): 705-712.

[4] Zhao J, Du Y, Horton J R, et al. Discovery and structural characterization of a small molecular 14-3-3 protein-protein interaction inhibitor. Proc Natl Acad Sci USA, 2012,108(39): 16212-16216.

[5] 刘丹, 尹东, 廖章萍, 等. p38MAPK/14-3-3γ通路在LPS预处理对抗心肌细胞缺氧/复氧损伤中的作用. 中国药理学通报,2012,28(9):1239-1243. Liu D, Yin D, Liao Z P, et al. Role of p38 MAPK/14 -3 -3 γ signal pathway in LPS preconditioning against cardiomyocytes anoxia / reoxygenation injury. Chinese Pharmacological Bulletin, 2012,28(9):1239-1243.

[6] 程道宾, 陈小武. 14-3-3γ过表达通过抑制LRRK2 的去磷酸化防护鱼藤酮诱导的多巴胺能细胞损伤. 中风与神经疾病杂志, 2013,30(8): 703-706. Cheng D B, Chen X W. Overexpression of 14-3-3γ protects rotenone induced PC12 cells injury through preventing dephosphorylation of LRRK2.J Apoplexy and Nervous Diseases, 2013,30(8): 703-706.

[7] 沈奇,张文文, 陶雪娇, 等. 14-3-3γ表达载体的构建及其对子宫肌瘤细胞增殖和凋亡的影响. 温州医科大学学报, 2014,44(2): 79-82. Shen Q, Zhang W W, Tao X J, et al. Construction of a 14-3-3γ expression vector and its effect on proliferation and apoptosis of uterine leiomyoma cells. Journal of Wenzhou Medical University, 2014,44(2): 79-82.

[8] Dong Y, Zhao R, Chen X Q, et al. 14-3-3γ and neuroglobin are new intrinsic protective factors for cerebral ischemia. Mol Neurobiol, 2010,41(2-3):218-231.

[9] Burgos S A, Dai M, Cant J P. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. Journal of Dairy Science, 2010,93(1): 153-161.

[10] Rius A G, Appuhamy J A D R N, Cyriac J, et al. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 2010,93(7): 3114-3127.

[11] Tong H L, Li Q Z, Gao X J, et al. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line. In Vitro Cell Dev Biol Anim, 2012,48(3): 149-155.

[12] Lu L M, Li Q Z, Huang J G, et al. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis. Moleculaes, 2013,18(1): 263-275.

[13] Wang L N, Lin Y, Bian Y J, et al. Leucyl-tRNA synthetase regulates lactation and cell proliferation via mTOR signaling in dairy cow mammary epithelial cells. Int J Mol Sci, 2014,15(4): 5952-5969.

[14] Li H M, Wang C M, Li Q Z, et al. MiR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression. Molecules, 2012,17(10): 12037-12048.

[15] 陈洪菊, 屈艺,母得志. mTOR信号通路的生物学功能. 生命的化学, 2010,30(4):555-561. Chen H J, Li J H, Mu D Z. The progress of study on the biological function of mTOR pathway.Chemistry of Life, 2009,30(4):555-561.

[16] Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.Cell,2010,141(2):290.303.

[17] 文捐, 庹勤慧. SREBP通过调节脂质代谢影响细胞生长. 生命的化学. 2011,31(6): 790-795. Wen J, Tuo Q H. SREBP affect cell growth by regulating lipid metabolism. Chemistry of Life, 2011,31(6):790-795.

[18] Sege R R, Krebs E G. The MAPK signaling cascade. The FASEB Journal,1995, 9(9): 726-735.

[19] Ma X M, Blenis J. Molecular mechanisms of mTOR mediated translational control. Nature Reviews Molecular Cell Biology, 2009,10(5): 307-318.

[20] Zheng Q, Yin G, Yan C, et al. 14-3-3β binds to big mitogen-activated protein kinasel (BMK1 /ERK5) and regulates BMK1 function. The Journal of Biological Chemistry, 2004,279(10): 8787-8791.

[21] Li G, White C A, Lam T, et al. Combinatorial H3K9acS10ph histone modifications in IgH locus S regions target 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination. Cell Reports, 2013,5(3): 702-714.

[1] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[2] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[3] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[4] 程雨涵,龚熹,罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *[J]. 中国生物工程杂志, 2019, 39(5): 105-113.
[5] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[6] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[7] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[8] 姜春莲, 汪艳璐, 罗玉萍. 成年哺乳动物神经发生的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 107-112.
[9] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.
[10] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[11] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[12] 朱丽, 王学斌, 石昊, 俞慧清, 陆平, 徐旭俊, 成国祥. 转溶菌酶基因山羊乳腺上皮细胞的原代培养及特性分析[J]. 中国生物工程杂志, 2014, 34(10): 28-34.
[13] 沈鑫, 马依彤, 杨毅宁, 刘芬, 于子翔, 陈邦党, 陈铀. FrzA基因转导干预缺血性心力衰竭小鼠心肌Wnt信号通路的研究[J]. 中国生物工程杂志, 2013, 33(7): 13-17.
[14] 谢荣辉, 殷嫦嫦, 殷明, 陈伟才, 邬亚华, 何丁文, 林思文, 耿书国. N-乙酰半胱氨酸通过激活PI3K-Akt信号途径抑制过氧化氢诱导骨髓间充质干细胞凋亡[J]. 中国生物工程杂志, 2013, 33(11): 1-7.
[15] 谢佳瑛, 胥文春, 徐道晶, 张晓艳, 唐敏. Notch信号参与BMP9诱导的间充质干细胞成骨分化及其机制的初步探讨[J]. 中国生物工程杂志, 2012, 32(11): 14-22.