Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (10): 72-77    DOI: 10.13523/j.cb.20151011
综述     
谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展
胡燕珍1, 卫军营2, 罗光明1
1. 江西中医药大学 药学院 南昌 330004;
2. 中国中医科学院中药研究所 北京 100700
Research on Glutathione-related Signaling Pathway in Liver Diseases
HU Yan-zhen1, WEI Jun-ying2, LUO Guang-ming1
1. College of Pharmacy Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
2. Institute of Chinese Medica, China Academy of Traditional Chinese Medical Science, Beijing 100700, China
 全文: PDF(970 KB)   HTML
摘要:

谷胱甘肽(GSH)是细胞内主要的抗氧剂和氧化还原、细胞信号调节器,它能还原过氧化氢、清除活性氧(ROS)和含氮自由基使细胞免受氧化应激损伤。不管细胞内是否存在ROS氧化细胞蛋白,谷胱甘肽均能诱导氧化还原反应发生转变,进一步使信号传导功能及转录因子分子功能发生改变。大量实验表明,ROS和GSH在多条细胞信号调节通路中发挥着重要作用。主要阐述了Fas 、TNF-α和NF-κB信号通路及线粒体凋亡途径及GSH在这些通路中的作用。尤其是线粒体GSH耗竭能诱导线粒体内ROS显著增加,从而损害细胞生物能量和诱导线粒体通透性转换孔开启。根据线粒体损害程度,NF-κB信号通路可被抑制,肝细胞也可能经历不同的死亡模式(凋亡或坏死)并对刺激细胞死亡信号(如TNF-α)也更敏感。这些过程涉及许多肝脏疾病的发病机理。

关键词: 谷胱甘肽信号通路凋亡肝脏疾病氧化应激    
Abstract:

Glutathione (GSH) is a major antioxidant, as well as redox and cell signaling regulator. GSH Protects cells from oxidative injury by reducing H2O2, scavenging reactive oxygen and nitrogen radicals. In addition, GSH-induced redox shift with or without ROS subjects some cellular proteins to varied forms of oxidation, further altering the function of signal transduction and transcription factor molecules. A lot of experiments showed that ROS and GSH play important roles in modulating multiple signaling pathways. Fas and TNF-a signaling, NF-κB and mitochondrial apoptotic pathways are focused on. Notably, the depletion of mitochondrial GSH induces increased mitochondrial ROS exposure which impairs bioenergetics and promotes mitochondrial permeability transition pore opening which is critical for cell death. Depending on the extent of mitochondrial damage, NF-κB inhibited and hepatocytes may either undergo different modes of cell death (apoptosis or necrosis) or be sensitized to cell death stimuli (i.e.TNF-α). These processes have been implicated in the pathogenesis of many liver diseases.

Key words: Glutathione    Oxidative stress    Signaling pathways    Apoptosis    Liver diseases
收稿日期: 2015-04-14 出版日期: 2015-10-25
ZTFLH:  Q257  
基金资助:

国家"十二五"科技支撑计划课题资助项目(2011BAI04B01)

通讯作者: 罗光明     E-mail: 992830182@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.

HU Yan-zhen, WEI Jun-ying, LUO Guang-ming. Research on Glutathione-related Signaling Pathway in Liver Diseases. China Biotechnology, 2015, 35(10): 72-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151011        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I10/72

[1] Richie J P, Skowronski L, Abraham P, et al. Blood glutathione concentrations in a large-scale human study. Clin Chem, 1996,42(01):64-70.
[2] 王璇,张鹏,李冬民. 氢过氧化物及谷胱甘肽过氧化物酶在肿瘤发生过程中的作用. 国外医学(医学地理分册),2015,36(01):71-74. Wang X, Zhang P, Li D M. The function of hydroperoxides and glutathione peroxidases in the process of tumorigenesis. Foreign Medical Science Section of Medgeography ,2015,36(01):71-74.
[3] 赵雪梅.谷胱甘肽在铅中毒治疗中的辅助作用. 工业卫生与职业病,2015,41(01):52-54. Zhao X M. The supporting role of glutathione in the therapy of lead poisoning . Ind Hlth & Occup Dis,2015,41(01):52-54.
[4] 赵凤. 砷-谷胱甘肽复合物的降解及含砷化合物对谷胱甘肽清除自由基的影响.天津:天津大学,2012. Zhao F. Study on the degradation of arsenic-glutathione and influence of arsenicals for free radical scavenging by glutathione.Tianjin: Tianjin University,2012.
[5] 李民,冯银刚,高杨,等. 谷氧还蛋白系统及其对细胞氧化还原态势的调控. 生物物理学报, 2007,23(5): 343-350. Li M, Feng Y G, Gao Y, et al. Glutaredoxin system and its regulation to the cytosolic thiol-redox status . Acta Biophysica Sinica,2007,23(5):343-350.
[6] 张春晶,于海涛,邹朝霞,等. 谷氧还蛋白的生物学活性及其与人类疾病的关系. 生命的化学. 2006,26 (02): 163-165. Zhang C J, Yu H T, Zhou C X, et al. Relationship glutaredoxin biological activity and its relationship with human diseases . Chemistry of Life,2006,26(02):163-165.
[7] Shelton M D, Distler A M, Kern T S, et al. Glutaredoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (Müller) cells. 2009,284(08):4760-4766.
[8] Biswas S, Chida A S, Rahman I. Redox modifications of protein-thiols: Emerging roles in cell signaling.Biochem Pharmacol, 2006, 71(05):551-564.
[9] Brar S S, Grigg C, Wilson K S , et al. Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease. Mol Cancer Ther, 2004, 3(09):1049-1060.
[10] Qanungo S, Starke D W, Pai H V, et al. Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFκB. Journal of Biological Chemistry, 2007, 282(25):18427-18436.
[11] Matsumaru K, Ji C, Kaplowitz N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes.Hepatology , 2003,37 (6):1425-1434.
[12] Brown G C, Borutaite V. Regulation of apoptosis by the redox state of cytochrome C. Biochim Biophys Acta,2008,1777(7-8):877-881.
[13] 程莉. 拉米夫定联合还原型谷胱甘肽治疗重型乙肝血清MMP-13、TNF-α、TGF-β1变化及疗效. 海南医学院学报,2015,21(03):319-322. Cheng L. Effect of lamivudine with reduced glutathione therapy on serum MMP-13, TNF-α, TGF-β1 of patients with severe hepatitis B . Journal of Hainan Medical University,2015,21(03):319-322.
[14] 张雷,戴一菲. 阿德福韦酯联合还原型谷胱甘肽对代偿期乙型肝炎后肝硬化患者肝功能和炎性因子水平的影响及其疗效分析. 海南医学院学报,2015,21(02):194-196. Zhang L , Dai Y F. Effect of adefovir dipivoxil combined with reduced glutathione on liver function and inflammatory factor leves of patients with compensated posthepatitic cirrhosis. Journal of Hainan Medical University , 2015,21(02):194-196.
[15] 文秀玉,席宏杰. NF-κB信号转导与肝脏疾病关系的研究进展. 胃肠病学和肝病学杂志,2014,23(02):127-130. Wen X Y, Xi H J. Relationship between NF-κB pathway and liver disease . Chin J Gastroenterol Hepatol,2014,23(02):127-130.
[16] 张勇,鲍红光,尹加林,等. N-乙酰半胱氨酸对大鼠肝脏缺血再灌注损伤NF-κ B和ICAM-1表达的影响. 现代生物医学进展,2010,10(23):4454-4457. Zhang Y, Bao H G, Yin J L, et al. Effect of N-acetylcysteine on expression of NF-κ B and ICAM-1 in rats with hepatic ischemia/reperfusion injury. Progress in Modern Biomedicine,2010,10(23):4454-4457.
[17] 张伟. NF-κB、氧化应激在酒精性脂肪肝发病机制中的作用及水飞蓟素干预研究.合肥:安徽医科大学,2012. Zhang W. The Effects of NF-κB and oxidative stress in the pathogenesis of alcoholic fatty liver and its suppression by silymarin.Hefei:Anhui Medical University,2012.
[18] Reynaert N L. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA, 2006,103(35):13086-13091.
[19] Nish T, Shimizu N, Hiramoto M, et al. Spatial redox regulation of a critical cysteine residue of NF-kappaB in vivo. J Biol Chem, 2002,277 (46):44548-44556.
[20] 李燕,万汝根. N-乙酰半胱氨酸对心衰兔氧化应激和核因子NF-κB的干预研究. 中国生化药物杂志,2015,35(02):55-58. Li Y, Wan R G. Effect of N-acetylcsteine on oxidative stress and NF-κB in heart failure rabbits and its mechanism . Chinese Journal of Biochemical Pharmaceutics,2015,35(02):55-58.
[21] Glineur C, Davioud-Charvet E, Vandenbunder B. The conserved redox-sensitive cysteine residue of the DNA-binding region in the c-Rel protein is involved in the regulation of the phosphorylation of the protein. Biochem J, 2000, 352 (Pt 2):583-591.
[22] Lou H, Kaplowitz N. Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms. J Biol Chem, 2007, 282 (40):29470-29481.
[23] 王新,陈凤玲. 线粒体的功能及检测方法. 医学综述,2011,17(1):12-15. Wang X, Chen F L. Mitochondrial function and detection methods. Medical Recapitulate,2011,17(1):12-15.
[24] 郑天胜,李翔. 线粒体凋亡通路的研究进展. 医学综述,2013,19(18):3282-3285. Zheng T S, Li X. Research progress in mitochondrial apoptosis pathway. Medical Recapitulate,2013,19(18):3282-3285.
[25] Cande C, Vahsen N, Garrido C, et al. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ, 2004,11 (6):591-595.
[26] Zoratti M, Szabo I, De Marechi U. Mitochondrial permeability transitions:how many doors to the house?. Biochim Biophys Acta, 2005,1706(1/2):40-52.
[27] Youle R J, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008,9 (1):47-59.
[28] 吴伟,徐蔚. 线粒体通透性转换孔结构和功能的研究进展. 医学信息,2011,24(3):1753-1754. Wu W, Xu W. Progress in the studies of the structure and function of mitochondria permeaability transition pore. Medical Information,2011,24(3): 1753-1754.
[29] Halestrap A P,Clarke S J, Khaliulin I, et al.The role of mitochondria in protection of the heart by preconditioning .Biochim Biophys Acta, 2007,1767(8):1007-1031.
[30] Baines C P, Kaiser R A, Sheiko T, et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol, 2007,9(5): 550-555.
[31] Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature, 2005,434 (7033):652-658.
[32] Lu C, Armstrong J S. Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion. Biochem Biophys Res Commun, 2007,363 (3):572-577.

[1] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[2] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[3] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[4] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[5] 郭利成,曹雪玮,傅龙云,王富军,赵健. 一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *[J]. 中国生物工程杂志, 2020, 40(6): 40-52.
[6] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[7] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[8] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[9] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[10] 程雨涵,龚熹,罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *[J]. 中国生物工程杂志, 2019, 39(5): 105-113.
[11] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[12] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[13] 黄翔,杨杰,何佩彦,吴志慧,曾慧兰,王新宁,蒋建伟. 白花地胆草单体EM-12诱导2774-C10细胞G1/S期阻滞及细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2018, 38(4): 17-23.
[14] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[15] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.