Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (5): 107-112    DOI: 10.13523/j.cb.20170513
综述     
成年哺乳动物神经发生的研究进展
姜春莲, 汪艳璐, 罗玉萍
南昌大学生命科学学院 南昌 330031
Development of Neurogenesis in the Adult Mammalian
JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping
School of Life Sciences, Nanchang University, Nanchang 330031, China
 全文: PDF(391 KB)   HTML
摘要:

神经干细胞是一类具有自我更新能力和多向分化潜能的干细胞。在特定条件下,神经干细胞可分化为神经元、少突胶质细胞和星形胶质细胞从而参与神经功能的修复过程,该过程称为神经发生。一直以来,人们认为神经发生主要发生在哺乳动物胚胎时期,而成体是不存在神经发生的。然而近年的研究表明,成体神经发生在哺乳动物中枢神经系统中是终生存在的,且通过多种信号通路来调控。现就成年哺乳动物神经发生的研究进展展开论述。

关键词: 神经发生信号通路神经干细胞    
Abstract:

Neural stem cells (NSCs) are stem cells with the ability of self-renewal and multiple differentiation potential. Under certain circumstances,NSCs are able to differentiate into neurons,oligodendrocytes and astrocytes,participating in functional recovery of neural system, which is known as neurogenesis. It has always been considered that neurogenesis occurs predominantly in embryonic period but not in adulthood of mammalian. However,recent studies have shown that neurogenesis occurs throughout lifetime in the central nervous system of mammalian, meanwhile it can be regulated via a variety of signaling pathways. Here the review focus on current researches of neurogenesis in adult mammals.

Key words: Signal pathway    Neural stem cells    Neurogenesis
收稿日期: 2016-12-05 出版日期: 2017-05-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(31660324)、江西省自然科学重点项目(20152ACB20008)、江西省自然科学青年基金(20132BAB204033)资助项目

通讯作者: 罗玉萍     E-mail: luoyuping@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姜春莲, 汪艳璐, 罗玉萍. 成年哺乳动物神经发生的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 107-112.

JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping. Development of Neurogenesis in the Adult Mammalian. China Biotechnology, 2017, 37(5): 107-112.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170513        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I5/107

[1] Ming G L, Song H. Adult neurogenesis in the mammalian brain:significant answers and significant questions. Neuron, 2011, 70(4):687-702.
[2] Duan X, Kang E, Liu C Y, et al. Development of neural stem cell in the adult brain. Current Opinion in Neurobiology, 2008, 18(1):108-115.
[3] Wang T W, Stromberg G P, Whitney J T, et al. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. The Journal of Comparative Neurology, 2006, 497(1):88-100.
[4] Beckervordersandforth R, Tripathi P, Ninkovic J, et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell, 2010, 7(6):744-758.
[5] Luo Y, Coskun V, Liang A, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 2015, 161(5):1175-1186.
[6] Coskun V, Wu H, Blanchi B, et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(3):1026-1031.
[7] Codega P, Silva-Vargas V, Paul A, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 2014, 82(3):545-559.
[8] Bonaguidi M A, Wheeler M A, Shapiro J S, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 2011, 145(7):1142-1155.
[9] Doetsch F. The glial identity of neural stem cells. Nature Neuroscience, 2003, 6(11):1127-1134.
[10] Zhao C, Deng W, Gage F H. Mechanisms and functional implications of adult neurogenesis. Cell, 2008, 132(4):645-660.
[11] Ming G L, Song H. Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 2005, 28(7):223-250.
[12] Bond A M, Ming G L, Song H. Adult mammalian neural stem cells and neurogenesis:five decades later. Cell stem cell, 2015, 17(4):385-395.
[13] Sawamoto K, Wichterle H, Gonzalez-Perez O, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 2006, 311(5761):629-632.
[14] Brill M S, Ninkovic J, Winpenny E, et al. Adult generation of glutamatergic olfactory bulb interneurons. Nature Neuroscience, 2009, 12(12):1524-1533.
[15] Bonaguidi M A, Wheeler M A, Shapiro J S, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 2011, 145(7):1142-1155.
[16] Berg D K,Yoon K J, Will B,et al. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front Biol,2015,10(3):262-271.
[17] Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Frontiers in Cellular Neuroscience, 2015,8(440):1-7.
[18] Sun G J, Zhou Y, Stadel R P, et al. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):9484-9489.
[19] Amrein I, Lipp H P. Adult hippocampal neurogenesis of mammals:evolution and life history. Biology Letters, 2009, 5(1):141-144.
[20] Lee D A, Yoo S, Pak T, et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Frontiers in Neuroscience, 2014, 8(157):1-11.
[21] Robins S C, Trudel E, Rotondi O, et al. Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS One, 2013, 8(10):e78236.
[22] Rizzoti K, Lovell-Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Molecular and Cellular Endocrinology, 2016,15(445):7-13.
[23] Rodriguez E M, Blazquez J L, Pastor F E, et al. Hypothalamic tanycytes:a key component of brain-endocrine interaction. International Review of Cytology, 2005, 247(12):89-164.
[24] Haan N, Goodman T, Najdi-Samiei A, et al. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2013, 33(14):6170-6180.
[25] Saper C B, Lowell B B. The hypothalamus. Current Biology:CB, 2014, 24(23):R1111-1116.
[26] Lee D A, Bedont J L, Pak T, et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nature Neuroscience, 2012, 15(5):700-702.
[27] Winner B, Winkler J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 2015, 7(4):a021287.
[28] De Ferrari G V, Moon R T. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene, 2006, 25(57):7545-7553.
[29] Ciani L, Salinas P C. WNTs in the vertebrate nervous system:from patterning to neuronal connectivity. Nature Reviews Neuroscience, 2005, 6(5):351-362.
[30] Logan C Y, Nusse R. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 2004, 20(11):781-810.
[31] Lie D C, Colamarino S A, Song H J, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(7063):1370-1375.
[32] Adachi K, Mirzadeh Z, Sakaguchi M, et al. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 2007, 25(11):2827-2836.
[33] Chao C C, Kan D, Lu K S, et al. The role of microRNA-30c in the self-renewal and differentiation of C6 glioma cells. Stem Cell Research, 2015, 14(2):211-223.
[34] Shelly M, Cancedda L, Lim B K, et al. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron, 2011, 71(3):433-446.
[35] Sun T, Li W, Ling S. miR-30c and semaphorin 3A determine adult neurogenesis by regulating proliferation and differentiation of stem cells in the subventricular zones of mouse. Cell Proliferation, 2016, 49(3):270-280.
[36] Zhong W, Chia W. Neurogenesis and asymmetric cell division. Current Opinion in Neurobiology, 2008, 18(1):4-11.
[37] Bray S, Bernard F. Notch targets and their regulation. Current Topics in Developmental Biology, 2010, 92(9):253-275.
[38] Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system:insights from mouse mutants. Nature Neuroscience, 2005, 8(6):709-715.
[39] Imayoshi I, Sakamoto M, Yamaguchi M, et al. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2010, 30(9):3489-3498.
[40] Ables J L, Decarolis N A, Johnson M A, et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2010, 30(31):10484-10492.
[41] Hsieh J. Orchestrating transcriptional control of adult neurogenesis. Genes & Development, 2012, 26(10):1010-1021.
[42] Andersen J, Urban N, Achimastou A, et al. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron, 2014, 83(5):1085-1097.
[43] Liu H K, Belz T, Bock D, et al. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes & Development, 2008, 22(18):2473-2478.
[44] Song J, Zhong C, Bonaguidi M A, et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489(7414):150-154.
[45] Hodge R D, Nelson B R, Kahoud R J, et al. Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2012, 32(18):6275-6287.
[46] Doetsch F, Caille I, Lim D A, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999, 97(6):703-716.

[1] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[2] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[3] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[4] 程雨涵,龚熹,罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *[J]. 中国生物工程杂志, 2019, 39(5): 105-113.
[5] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[6] 韩明明,罗玉萍. 内源CD133 +细胞示踪小鼠模型的制备和鉴定 *[J]. 中国生物工程杂志, 2018, 38(6): 58-62.
[7] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[8] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[9] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.
[10] 刘静, 骆超超, 黄建国, 吴迪, 高学军, 刘玉芬. 14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能[J]. 中国生物工程杂志, 2015, 35(6): 32-39.
[11] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[12] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[13] 沈鑫, 马依彤, 杨毅宁, 刘芬, 于子翔, 陈邦党, 陈铀. FrzA基因转导干预缺血性心力衰竭小鼠心肌Wnt信号通路的研究[J]. 中国生物工程杂志, 2013, 33(7): 13-17.
[14] 谢荣辉, 殷嫦嫦, 殷明, 陈伟才, 邬亚华, 何丁文, 林思文, 耿书国. N-乙酰半胱氨酸通过激活PI3K-Akt信号途径抑制过氧化氢诱导骨髓间充质干细胞凋亡[J]. 中国生物工程杂志, 2013, 33(11): 1-7.
[15] 谢佳瑛, 胥文春, 徐道晶, 张晓艳, 唐敏. Notch信号参与BMP9诱导的间充质干细胞成骨分化及其机制的初步探讨[J]. 中国生物工程杂志, 2012, 32(11): 14-22.