Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (5): 7-14    DOI: 10.13523/j.cb.1910054
研究报告     
S100A6通过招募和活化巨噬细胞促进血管形成*
林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰()
重庆医科大学检验医学院 临床检验诊断学教育部重点实验室 重庆 400016
S100A6 Promotes Angiogenesis Through Recruiting and Activating Macrophages
LIN Lu,HU Li-jun,HUANG Yi-yun,CHEN Lu,HUANG Mao,PENG Qi,HU Qin,ZHOU Lan()
Key Laboratory of Laboratory Medical Diagnostic of Ministry of Education Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1892 KB)   HTML
摘要:

目的:探讨S100A6经由巨噬细胞介导的促血管生成作用及机制。方法:(1)用重组蛋白 GST-hS100A6处理巨噬细胞后:①收集上清制备条件培养基(简称A6-Mφ-CM),并用之重悬人脐静脉内皮细胞(HUVEC),用体外血管形成试验检测各处理因素对血管形成的影响;②分别用实时荧光定量PCR和Western blot检测巨噬细胞的M2型标志物CD163及促血管形成因子CCL2、IL-6、VEGFA的mRNA和蛋白质水平,以及JAK2和STAT3的蛋白质及其磷酸化水平;③用Transwell迁移试验检测巨噬细胞迁移能力的变化。(2)使用JAK2抑制剂(XL019)预处理巨噬细胞后再加GST-hS100A6处理,检测S100A6促巨噬细胞迁移作用的变化。以重组蛋白GST为实验对照。 结果:(1)A6-Mφ-CM组的血管分支数和血管分支长度既明显高于GST-Mφ-CM组(P值均小于0.05),也明显高于GST-hS100A6直接处理的HUVEC组(P<0.001,P<0.01),提示S100A6处理后的巨噬细胞具有促进血管形成的作用;(2)GST-hS100A6处理后的巨噬细胞中,CD163、CCL2、IL-6、VEGFA的mRNA和蛋白质水平明显高于GST组(P值均小于0.05),提示S100A6诱导巨噬细胞向促血管表型(pro-angiogenic phenotype)转化;(3)GST-hS100A6处理后,巨噬细胞的迁移数是GST组的1.4倍(P<0.01),提示S100A6具有招募巨噬细胞的作用;(4)GST-hS100A6处理组巨噬细胞的JAK2和STAT3的蛋白质及其磷酸化水平都明显高于GST组(P值均小于0.05),而JAK2抑制剂XL019可部分抑制S100A6促进巨噬细胞迁移的作用(P<0.01),提示S100A6促进巨噬细胞迁移作用机制涉及JAK2/STAT3信号通路的激活。 结论:微环境中的S100A6可通过招募巨噬细胞并进一步诱导其向促血管表型转化,进而促进新生血管形成;其招募巨噬细胞的机制涉及JAK2/STAT3信号通路的激活。

关键词: S100A6巨噬细胞血管形成JAK2/STAT3信号通路    
Abstract:

Objective: To investigate the effect of S100A6 in microenvironment on promoting angiogenesis via macrophages and the underlying mechanism. Methods: (1)Macrophages were treated by recombinant proteins GST-hS100A6: ①Conditioned medium was collected (named A6-Mφ-CM) to resuspend human umbilical vein endothelial cells (HUVEC), and the effect on angiogenesis was examined by in vitro endothelial capillary formation assay. ②The mRNA and protein levels of CD163, CCL2, IL-6, VEGFA in macrophages were evaluated by Real-time PCR and Western blot. And JAK2 and STAT3 and their phosphorylation levels in macrophages were detected by Western blot. ③ The migration ability of macrophages was detected by Transwell migration assay. (2)The change of macrophage migration ability was detected by Transwell assay after pre-treatment of JAK2 inhibitor XL019. Results: (1) A6-Mφ-CM had obvious effects on promoting angiogenesis,the number of branches and branch length of the A6-Mφ-CM group was significantly higher than that of the GST-Mφ-CM group (P<0.05; P<0.05), and was also significantly higher than that of GST-hS100A6 group, suggesting that S100A6 treated macrophages can promote angiogenesis, while S100A6 has no direct pro-angiogenic effect. (2) After treatment with GST-hS100A6, the mRNA and protein levels of CD163, CCL2, IL-6 and VEGFA in macrophages were up-regulated compared with GST group (P<0.05; P<0.05; P<0.05; P<0.05), suggesting that S100A6 induced polarization of macrophages into a pro-angiogenic phenotype. (3) The number macrophage migrated in GST-hS100A6 group was 1.4-fold as much as that in GST group (P<0.01), suggesting that S100A6 can enhance macrophage migration. (4) GST-hS100A6 upregulated the levels of JAK2, STAT3 and their phosphorylation proteins in macrophages, indicating that JAK2/STAT3 pathway of macrophages was activated. (5) The effect of GST-hS100A6 on promoting macrophage migration was partly inhibited by JAK2 inhibitor XL019(P<0.01). Conclusion: S100A6 in the microenvironment can recruit macrophages by activating JAK2/STAT3 signaling, and further induce macrophage into a pro-angiogenic phenotype to promote angiogenesis indirectly.

Key words: S100A6    Macrophage    Angiogenesis    JAK2/STAT3 signaling
收稿日期: 2019-10-29 出版日期: 2020-06-02
ZTFLH:  Q-31  
基金资助: * 重庆市渝中区科技计划(基础与前沿研究)(20160106)
通讯作者: 周兰     E-mail: zhoulan@cqmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林璐
户丽君
黄逸云
陈露
黄茂
彭棋
胡琴
周兰

引用本文:

林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.

LIN Lu,HU Li-jun,HUANG Yi-yun,CHEN Lu,HUANG Mao,PENG Qi,HU Qin,ZHOU Lan. S100A6 Promotes Angiogenesis Through Recruiting and Activating Macrophages. China Biotechnology, 2020, 40(5): 7-14.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1910054        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I5/7

图1  THP-1经PMA诱导为巨噬细胞
图2  S100A6通过巨噬细胞间接促进血管形成
图3  S100A6促进巨噬细胞向促血管表型转化
图4  S100A6促进巨噬细胞迁移并激活其JAK2/STAT3信号通路
图5  S100A6通过激活JAK2/STAT3信号通路招募巨噬细胞
[1] Donato R, Sorci G, Giambanco I , et al. S100A6 protein: functional roles. Cell and Molecular Life Science, 2017,74(15):2749-2760.
[2] 赵佳丽, 谢佳卿, 谷月 , 等. 微环境中直接和间接促进结直肠癌细胞迁移. 肿瘤, 2018,38(6):553-561.
Zhao J L, Xie J Q, Gu Y , et al. S100A6 in the microenvironment directly and indirectly promotes migration of colorectal cancer LoVo cells. Tumor, 2018,38(6):553-561.
[3] 陈露, 黄茂, 彭棋 , 等. 通过巨噬细胞促结直肠癌细胞增殖的作用及机制. 中国生物工程杂志, 2019,39(4):1-7.
Chen L, Huang M, Peng Q , et al. S100A6 promotes cell proliferation of colorectal cancer via upregulating IL-6 expression of macrophages. China Biotechnology, 2019,39(4):1-7.
[4] Lee C C, Lin J C, Hwang W L , et al. Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nature Communications, 2018,9(1):3763.
[5] Huang C, Li Z, Li N , et al. Interleukin 35 expression correlates with microvessel density in pancreatic ductal adenocarcinoma, recruits monocytes, and promotes growth and angiogenesis of xenograft tumors in mice. Gastroenterology, 2018,154(3):675-688.
doi: 10.1053/j.gastro.2017.09.039
[6] Kim J, Bae J S . Tumor-associated macrophages and neutrophils in tumor microenvironment. [2020-4-14]. https://doi.org/10.1155/2016/6058147
[7] Mantovani A, Marchesi F, Malesci A , et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol, 2017,14(7):399-416.
[8] Pienta K J, Machiels J P, Schrijvers D , et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investigational New Drugs, 2013,31(3):760-768.
[9] Ngambenjawong C, Gustafson H H, Pun S H , et al. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Advanced Drug Delivery Reviews, 2017,114(1):206-221.
doi: 10.1016/j.addr.2017.04.010
[10] Li F, Kitajima S, Kohno S , et al. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Research, 2019,79(15):3903-3915.
[11] Mantovani A, Sozzani S, Locati M , et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 2002,23(11):549-555.
[12] Zha H, Sun H, Li X , et al. S100A8 facilitates the migration of colorectal cancer cells through regulating macrophages in the inflammatory microenvironment. Oncology Reports, 2016,36(1):279-290.
[13] Cerezo A B, Labrador M, Gutierrez A , et al. Anti-VEGF signalling mechanism in HUVECs by melatonin, serotonin, hydroxytyrosol and other bioactive compounds. Nutrients, 2019,11(10):2421.
[14] Xuan W, Qu Q, Zheng B , et al. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. Journal of Leukocyte Biology, 2015,97(1):61-69.
[15] Bercovici N . The remarkable plasticity of macrophages: a chance to fight cancer. [2020-4-14]. https://doi.org/10.3389/fimmu.2019.01563?.
[16] Zhang J . Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. [2020-4-14]. https://doi.org/10.1016/j.redox.2019.101116.
[17] Duan L, Wu R, Zou Z , et al. S100A6 stimulates proliferation and migration of colorectal carcinoma cells through activation of the MAPK pathways. International Journal of Oncology, 2014,44(3):781-790.
[18] 李爱芳, 谷月, 李雪茹 , 等. 促宫颈癌细胞增殖、迁移及其可能机制研究. 中国生物工程杂志, 2017,37(2):8-14.
Li A F, Gu Y, Li X R , et al. Effects of S100A6 on proliferation and migration of human cervical cancer cells and its mechanism. China Biotechnology, 2017,37(2):8-14.
[19] Kim M S, Lee H S, Kim Y J , et al. MEST induces Twist-1-mediated EMT through STAT3 activation in breast cancers. Cell Death & Differentiation, 2019,26(12):2594-2606.
[20] Fletcher J S, Springer M G, Choi K , et al. STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. Oncogene, 2019,38(15):2876-2884.
[21] Yuan F, Fu X, Shi H , et al. Induction of murine macrophage M2 polarization by cigarette smoke extract via the JAK2STAT3 pathway. PLoS One, 2014,9(9):e107063.
[1] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[2] 谭杨,刘胜,罗凤玲,章晓联. 结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *[J]. 中国生物工程杂志, 2018, 38(5): 1-9.
[3] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.
[4] 孙晖, 李雪茹, 查何, 段亮, 袁世梅, 李欢, 李爱芳, 谷月, 周兰. 外源性S100A6蛋白对人结直肠癌细胞S100A6基因转录的影响及机制探讨[J]. 中国生物工程杂志, 2016, 36(1): 14-22.
[5] 邹正渝, 王海燕, 黎玉叶, 孙双双, 叶立伟, 武睿, 段亮, 陈娴, 罗进勇, 周兰. 重组hS100A6蛋白的原核表达及其对人骨肉瘤细胞系143B的生物学作用[J]. 中国生物工程杂志, 2012, 32(12): 1-7.
[6] 黎玉叶, 李星星, 孙双双, 邹正渝, 张昀源, 段亮, 叶立伟, 武睿, 杨霞, 何通川, 周兰. S100A6蛋白对细胞中β-catenin水平的影响及可能机制[J]. 中国生物工程杂志, 2011, 31(11): 18-23.
[7] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[8] 李俏俏 王清路 张玉军 张锐 徐寿增. 人粒细胞-巨噬细胞集落刺激因子的克隆及在毕赤酵母中的表达[J]. 中国生物工程杂志, 2010, 30(01): 35-40.
[9] 杨慧宇 边云飞 杨志明 张娜娜 肖传实. LOX-1特异性小发夹RNA 表达载体的构建及其对巨噬细胞源性泡沫细胞形成的影响[J]. 中国生物工程杂志, 2009, 29(10): 6-11.
[10] 张领兵,伦艳妮,于乐洋,闫东梅,马威,杜柏榕,朱迅. SDS-聚丙烯酰氨凝胶电泳与液质联用技术分离和鉴定小鼠巨噬细胞膜蛋白[J]. 中国生物工程杂志, 2007, 27(4): 77-82.
[11] 冯怡, 张艳红, 朱旭东, 冯玉梅, 马清钧. 人内皮抑素基因的克隆以及在大肠杆菌中的可溶性表达研究[J]. 中国生物工程杂志, 2004, 24(9): 39-43.
[12] 童裳亮. 海洋动物的细胞培养与应用[J]. 中国生物工程杂志, 1994, 14(6): 47-48.
[13] 林剑. DNA重组碱性成纤维细胞生长因子的研究与开发[J]. 中国生物工程杂志, 1992, 12(6): 5-8.
[14] 傅俐, 姜锋, 周武林. 人体卫士——防卫素[J]. 中国生物工程杂志, 1992, 12(4): 62-63.
[15] 傅俐, 姜锋, 周武林. 人体卫士——防卫素[J]. 中国生物工程杂志, 1992, 12(3): 62-63.