Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (12): 36-44    DOI: 10.13523/j.cb.20141206
研究报告     
超嗜热酯酶EST2在不同宿主中的异源高效表达研究
罗漫杰, 谢渊, 钱志刚, 冯雁, 杨广宇
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
High-level Heterogenous Expression of a Hyperthermophilic Esterase in Different Hosts
LUO Man-jie, XIE Yuan, QIAN Zhi-gang, FENG Yan, YANG Guang-yu
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
 全文: PDF(966 KB)   HTML
摘要:

来源于超嗜热古菌Alicyclobacillus acidocaldarius的酯酶EST2是目前报道的活性最高的超嗜热酯酶,具有极大的工业应用价值。为促进EST2的生产应用,将其分别在大肠杆菌及毕赤酵母中进行异源表达,并就不同宿主对表达情况和重组酶酶学性质的影响进行了分析。在大肠杆菌和毕赤酵母中重组表达的EST2酶学性质基本一致:最适温度分别为75℃和77.5℃,最适pH均为8.0,比活力分别为4656.6 U/mg和4078.3 U/mg,70℃水浴保温4.5 h,残余活力均在70%以上。在摇瓶发酵的基础上,于5 L发酵罐中进行了重组大肠杆菌及毕赤酵母的高密度发酵。毕赤酵母高密度发酵120 h菌体干重达68 g/L,最大表达酶活力为959.6 U/ml。大肠杆菌高密度发酵25 h菌体干重达60.8 g/L,最大酶活力14825.6 U/ml,表达量是毕赤酵母的15.4倍,单位时间产量是酵母的74.2倍。结果表明大肠杆菌发酵周期短、表达量高,更适合进行嗜热酯酶EST2的高效生产,这为促进嗜热酯酶在工业生物技术产业的应用奠定了基础。

关键词: 嗜热酯酶异源表达高密度发酵大肠杆菌毕赤酵母    
Abstract:

Thermophilic Esterase 2 (EST2) from Alicyclobacillus acidocaldarius belongs to the HSL group of the esterase/lipase superfamily. It has been reported to be the most active hyperthermophilic esterase with excellent thermostability, which makes it a good choice for many industrial applications, such as food industry, fine chemical industry, pulp and paper industry and environmental bio-mediation. However, the biomass yield and the basal enzyme expression level are remarkably low in the cultivation of hyperthermophiles, which results in the high cost for the large-scale production of EST2 in its natural host. Heterogenous production of EST2 in a proper host organism holds great potential to solve this problem. E. coli and Pichia pastoris are the most widely used hosts for the production of heterologous proteins. In order to establish the high-level expression system, the gene encoding EST2 was cloned and expressed in Pichia pastoris and E.coli, and the enzymatic properities of the recombinant proteins were systematically characterized and compared. The recombinant EST2 expressed in E.coli and Pichia pastoris showed very similar properties: the optimal temperatures were 75℃ and 77.5℃, the optimal pH were both 8.0, the specific activities were 4656.6 U/mg and 4078.3 U/mg, and the enzymes were stable up after incubation at 70℃ for 4.5h. After the optimized cultivation conditions in the shake flake, the expression of EST2 in different hosts was conducted in a 5 L fermentor by high cell-density fermentation. In Pichia pastoris, the recombinant EST2 was predominantly expressed extracellularly with activity of about 960 U/ml and a cell dry weight reached 68g/L after induction with methanol for 90h. On the other hand, the EST2 activity increased to 14825.6U/ml after 25h of fermentation in E.coli, with a cell dry weight of 60g/L. The expression level and productivity in E.coli are 14.4-fold and 73.2-fold higher than that of Pichia pastoris, respectively. The results illustrated that E.coli is more suited for the high-level expression of EST2 than Pichia pastoris, which will further promote wider application of EST2 in biotech industries.

Key words: Thermophilic Esterase 2    Heterologous expression    High cell-density fermentation    Echerichia coli    Pichia pastoris
收稿日期: 2014-09-05 出版日期: 2014-12-25
ZTFLH:  Q789  
基金资助:

国家"863"计划(2013AA102801)、国家自然科学基金(31070056)、教育部博士点基金(20110073120062)资助项目

通讯作者: 杨广宇     E-mail: yanggy@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

罗漫杰, 谢渊, 钱志刚, 冯雁, 杨广宇. 超嗜热酯酶EST2在不同宿主中的异源高效表达研究[J]. 中国生物工程杂志, 2014, 34(12): 36-44.

LUO Man-jie, XIE Yuan, QIAN Zhi-gang, FENG Yan, YANG Guang-yu. High-level Heterogenous Expression of a Hyperthermophilic Esterase in Different Hosts. China Biotechnology, 2014, 34(12): 36-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141206        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I12/36


[1] Bornscheuer U T. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev, 2002, 26(1):73-81.

[2] Manco G, Adinolfi E, Pisani F M, et al. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormonesensitive lipase subfamily. Biochem J, 1998, 332:203-212.

[3] Mandrich L, Manco G, Rossi M, et al. Alicyclobacillus acidocaldarius thermophilic esterase EST2's activity in milk and cheese models. Appl Environ Microbiol, 2006, 72(5):3191-3197.

[4] Ferdinando F, Luigia M, Giovanni PC, et al. Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal Chem, 2011, 83:1530-1536.

[5] De Simone G, Manco G, Galdiero S, et al. Crystallization and preliminary X-ray diffraction studies of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. Acta Cryst, 1999, 55, 1348-1349.

[6] Manco G, Mandrich L, Rossi M. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. J Biol Chem, 2001, 276:37482-37490.

[7] Pezzullo M, Del Vecchio P, Mandrich L, et al. Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2. Protein Eng Des Sel, 2013, 26(1):47-58.

[8] Foglia F, Mandrich L, Pezzullo M, et al. Role of the N-terminal region for the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius. Biophys Chem, 2007, 127:113-122.

[9] Mandrich L, Merone L, Pezzullo M, et al. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family, J Mol Biol,2005, 345(3):501-512.

[10] Schiraldi C, Acone M, Giuliano M, et al. Innovative fermentation strategies for the production of extremophilic enzymes. Extremophiles, 2001, 5(3):193-198.

[11] Demain A L, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv, 2009, 27(3):297-306.

[12] McHunu N P, Singh S, Permaul K. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol, 2009, 141(1-2): 26-30.

[13] Sriyapai T, Somyoonsap P, Matsui K, et al. Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng, 2011, 111(5):528-536.

[14] Zhou K, He H X, Wang X W, et al. Cloning, expression and bioactivity of hemagglutinin binding domain protein of avian influenza virus in the yeast Pichia pastoris and E.coli. Progress on Post-genome Technologies, Proceedings of the 6'th International Forum of Post-genome Technologies (IFPT'6), Beijing, China, 2009.

[15] Kramer W, Elmecker G, Weik R, et al. Kinetic studies for the optimization of recombinant protein formation. Ann NY Acad Sci, 1996, 782: 323 -333.

[16] Tripathi N K. High yield production of heterologous proteins with Escherichia coli. De Sci J, 2009, 59:137-146.

[17] Pei X L, Wang Q, Qiu X, et al. The fed-batch production of a thermophilic 2-deoxyribose-5-phosphate aldolase (DERA) in Escherichia coli by exponential feeding strategy control. Appl Biochem Biotechnol, 2010, 162(5):1423-1434.

[18] Pei X L, Wang Q Y, Li C L, et al. Efficient production of a thermophilic 2-deoxyribose-5-phosphate aldolase in glucose-limited fed-batch cultivations of Escherichia coli by continuous lactose induction strategy. Appl Biochem Biotechnol, 2011, 165(2):416-425.

[19] Ren X, Yu D, Han S, et al. Optimization of recombinant hyperthermophilic esterase production from agricultural waste using response surface methodology. Bioresour Technol, 2006, 97(18):2345-2349.

[20] Ren X, Yu D, Yu L, et al. A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli by thermolysis. J Biotechnol, 2007, 129(4):668-673.

[21] Daly R, Hearn M T. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit, 2005, 18(2):119-138.

[22] Liu L, Yang H, Shin H D, et al. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered, 2013, 4(4):212-223.

[23] Menéndez C, Martínez D, Trujillo L E, et al. Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol, 2013, 97(3):1201-1212.

[24] Yan Q, Hua C, Yang S, Li Y, et al. High level expression of extracellular secretion of a β-glucosidase gene(PtBglu3) from Paecilomyces thermophila in Pichia pastoris. Protein Expr Purif, 2012, 84(1):64-72.

[25] Fan G, Katrolia P, Jia H, et al. High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Biotechnol Lett, 2012, 34(11):2043-2048.

[26] Jia H Y, Fan G S, Yan Q J, et al. High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. J Mol Catal B: Enzym, 2012, 78: 72-77.

[27] Xie Y, An J, Yang G, et al. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem, 2014, 289(11):7994-8006.

[28] Yang G, Bai A, Gao L, et al. Glu88 in the non-catalytic domain of acylpeptide hydrolase plays dual roles: charge neutralization for enzymatic activity and formation of salt bridge for thermodynamic stability. Biochim Biophys Acta, 2009, 1794(1): 94-102.

[29] Zheng J, Zhao W, Guo N, et al. Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris. Bioresour Technol, 2012, 118: 257-264.

[30] Damasceno L M, Pla I, Chang H J, et al. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif, 2004, 37(1): 18-26.

[31] Huang H, Yang P, Luo H, et al. High-level expression of a truncated 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol. 2008, 78(1): 95-103.

[32] Chen C, Wu PH, Huang C T, et al. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol, 2004, 35: 315–320.

[33] Xie J, Zhou Q, Du P, et al. Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme Microb Technol, 2005, 36: 210-216.

[34] Liu B, Lei Y T, Zhang J, et al. Expression, purification and characterization of recombinant human gelatin in Pichia pastoris. Advanced Materials Research, 2011, 236: 2905-2912.

[35] Riesenberg D, Guthke R. High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol, 1999, 51(4):422-430.

[36] Soares C R, Gomide F I, Ueda E K, et al. Periplasmic expression of human growth hormone via plasmid vectors containing the lambdaPL promoter: use of HPLC for product quantification. Protein Eng, 2003, 16(12):1131-1138.

[37] Ohta K, Shibui T, Morimoto Y, et al. High level production of human proapo A-I by fed-batch culture of recombinant Escherichia coli. Journal of Fermen and Bioeng, 1993, 75(2): 155-157.

[38] Ma X, Su E, Zhu Y, et al. High-level expression of glutaryl-7-aminocephalosporanic acidacylase from Pseudomonas diminuta NK703 in Escherichia coli bycombined optimization strategies. J Biotechnol, 2013, 168(4):607-615.

[39] Baheri H R, Roesler W J, Hill G A, et al. Modeling of recombinant bacteria fermentation for enhanced productivity. Biotechnol Tech, 1997, 11(1): 47-50.

[40] 丁兰宝,牛丹丹,石贵阳,等. 重组大肠杆菌表达古菌基因的发酵条件优化.食品工业科技,2008, 29:97-102. Ding L B, Niu D D, Shi G Y, et al. Optimization of fermentation conditions of recombinant E.coli for production of archaeal thermostable acidic α-amylase. Science and Technology of Food Industry, 2008, 29:97-102.

[41] Sitney K C, Mann M B, Stearns G W, et al. Use of a modified tryptophanase promoter to direct high-level expression of foreign proteins in E. coli. Ann N Y Acad Sci, 1996, 782:297-310.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[4] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[5] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[6] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[7] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[8] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[9] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[10] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[11] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[12] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[13] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[14] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[15] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.