Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (05): 51-57    
研究报告     
苯甘氨酸氨基转移酶基因hpgt的原核优化表达与酶动力学特性研究
王宗瑞, 赵广荣
天津大学化工学院制药工程系 天津 300072
Optimized Prokaryotic Expression of the Recombinant hpgt Gene and Enzyme Kinetic Characteristics
WANG Zong-rui, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology of Tianjin University, Tianjin 300072, China
 全文: PDF(1052 KB)   HTML
摘要:

苯甘氨酸氨基转移酶(4-Hydroxyphenylglycine aminotransferase)是假单胞菌所产生的一种能够合成D-苯甘氨酸的重要转氨酶。利用密码子优化技术,合成苯甘氨酸转移酶基因。构建原核重组质粒pCDF-hpgt,转入感受态细胞E.coli BL21(DE3),优化表达His-HpgT蛋白。利用Ni-NTA柱纯化技术获得高纯度的His-HpgT融合蛋白。分别测定融合蛋白在正反向反应中的酶活力单位及最佳的反应温度、pH值及其他动力学参数,并对该酶特性作相关的机理分析。 测定结果表明,正向反应和反向反应的酶比活力分别为749mU/mg、2 257mU/mg,此酶分解苯甘氨酸的能力要强于合成苯甘氨酸;正向反应的最适温度与pH分别是35℃和8.0;由米氏方程得出该酶对苯甘氨酸的亲和力远大于谷氨酸;较低浓度的苯乙醛酸即可抑制反应的进行。

关键词: 基因hpgtD-苯甘氨酸原核优化表达酶动力学特性    
Abstract:

4-Hydroxyphenylglycine aminotransferase which can synthesize D-phenylglycine transaminase is produced by Pseudomonas. The hpgt gene was synthesized through the codon optimization technology. The recombinant prokaryotic plasmid pCDF-hpgt was obtained. The plasmid was transformed into the competent cell E. coli BL21 (DE3). The recombinant His-HpgT protein was obtained after the optimized expression and purified by nickel chelate affinity chromatography method. The enzyme activity of the forward and reverse reactions was measured and the activity of the forward reaction reached 749mU/mg which was lower than the reverse, 2 257mU/mg. Also the optimized temperature and pH were measured, with the result of 35℃and 8.0. Other kinetic parameters and the mechanism analysis of enzyme characteristics were explained. The enzyme affinity to phenylglycine was higher than the glutamate which obtained by the Michaelis-Menten equation; and the reaction was inhibited by the lower concentration of phenylglyoxylic acid.

Key words: hpgt gene    D-phenylglycine    Optimized prokaryotic expression    Enzyme kinetic characteristics
收稿日期: 2012-02-20 出版日期: 2012-05-25
ZTFLH:  Q78  
基金资助:

教育部博士点基金资助项目(20090032110015)

通讯作者: 赵广荣     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王宗瑞, 赵广荣. 苯甘氨酸氨基转移酶基因hpgt的原核优化表达与酶动力学特性研究[J]. 中国生物工程杂志, 2012, 32(05): 51-57.

WANG Zong-rui, ZHAO Guang-rong. Optimized Prokaryotic Expression of the Recombinant hpgt Gene and Enzyme Kinetic Characteristics. China Biotechnology, 2012, 32(05): 51-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I05/51


[1] Sheldon R A. Chirotechnology: Designing economic chiral syntheses. J Chem Technol Biotechnol, 1996, 67(1): 1-14.

[2] Rosell C M, Fernández-Lafuente R, Guisán J M. Resolution of racemic mixtures by synthesis reactions catalyzed by immobilized derivatives of the enzyme penicillin G acylase. J Mol Catal, 1993, 84(3): 365-371.

[3] Beard T M,Page M I. Enantioselective biotransformations using rhodococci. Antonie Van Leeuwenhoek, 1998, 74(1-3): 99-106.

[4] Hojati Z, Milne C, Harvey B, et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. J Chem Bio, 2002, 9(11): 1175-1187.

[5] Jones W M, Soper T S, Ueno H, et al. D-Glutamate-D-amino acid transaminase from bacteria. Meth Enzymology, 1985, 113: 108-113.

[6] Wiyakrutta S, Meevootisom V. A stereo-inverting-phenylglycine aminotransferase from Pseudomonas stutzeri ST-201: purification, characterization and application for -phenylglycine synthesis. J Biotechnol,1997, 55(3): 193-203.

[7] Muller U, van Assema F, Gunsior M, et al. Metabolic engineering of the E-coli L-phenylalanine pathway for the production of D-phenylglycine (D-Phg). Metab Eng, 2006, 8(3): 196-208.

[8] 黄培堂译. 分子克隆实验指南(上下册). 北京:科学出版社,2005.1763-1765. Huang P T. Molecular Cloning.Beijing: Science Press,2005.1763-1765.

[9] Carbone A, Zinovyev A, Kepes F. Codon adaptation index as a measure of dominating codon bias. Bioinformatics,2003, 19(16): 2005-2015.

[10] Houng J Y, Liau J S. Applying slow-release biocatalysis to the asymmetric reduction of ethyl 4-chloroacetoacetate. Biotechnol Lett, 2003, 25(1): 17-21.

[11] Khampha W, Yakovleva J, Isarangkul D, et al. Specific detection of L-glutamate in food using flow-injection analysis and enzymatic recycling of substrate. Anal Chim Acta, 2004, 518(1-2): 127-135.

[12] Pedersen S, Christensen W M. Immobilized biocatalysts. In: Straathof A J J, Adlercreutz P. Applied Biocatalysis. 2nd ed, Netherlands : Harwood Academic Publishers, 2000. 213-228.

[13] Butterfield D A, Bhattacharyya D, Daunert S, et al. Catalytic biofunctional membranes containing site-specifically immobilized enzyme arrays: a review. J Membrane Sci, 2001, 181(1): 29-37.

[1] 高珊, 陈炜, 于磊, 李静, 孙彩显, 高杰, 刘牧. 小鼠和大鼠的胚胎培养基及若干相关问题[J]. 中国生物工程杂志, 2015, 35(7): 83-93.
[2] 徐登安, 赵纯钦, 张赤红, 陈静. 大麦水孔蛋白基因HvTIP2;1及其启动子的表达特性分析[J]. 中国生物工程杂志, 2015, 35(7): 15-21.
[3] 温赛, 杨建国. 地衣芽孢杆菌原生质体电转化方法的研究[J]. 中国生物工程杂志, 2015, 35(7): 76-82.
[4] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[5] 张旭宁, 权春善, 廖颖玲, 柳科欢, 熊文, 范圣第. 金黄色葡萄球菌双组分系统反应调节蛋白AgrA的原核表达、纯化及活性鉴定[J]. 中国生物工程杂志, 2015, 35(5): 32-40.
[6] 郭兆来, 白学贵, 严金平, 陈宣钦, 李昆志, 徐慧妮. 菠菜SoHb基因的原核表达及功能分析[J]. 中国生物工程杂志, 2015, 35(4): 54-59.
[7] 房战, 徐美娟, 饶志明, 满在伟, 许正宏, 耿燕, 陆茂林. 过量表达钝齿棒杆菌柠檬酸合酶编码基因prpC2对L-精氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 49-55.
[8] 蒋延超, 蒋世云, 傅凤鸣, 黄凯, 康星欣, 徐丹. 透明质酸生物合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2015, 35(1): 104-110.
[9] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[10] 柴玉琼, 张玉红, 韩凝, 朱睦元. 植物维生素E基因工程研究进展[J]. 中国生物工程杂志, 2014, 34(11): 100-106.
[11] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[12] 吴花拉, 张严玲, 罗旭, 葛飞, 潘光堂, 沈亚欧. 位点特异性重组系统及其在植物转基因研究中的应用[J]. 中国生物工程杂志, 2014, 34(11): 107-118.
[13] 马义, 罗天杰, 洪岸. 新型重组VPAC2激动剂RD的制备及促进胰岛素功能的分子机制[J]. 中国生物工程杂志, 2014, 34(11): 60-66.
[14] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[15] 刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.