Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (01): 103-108    
综述     
模式生物小立碗藓遗传转化系统的研究进展
汪运洋1, 王春梅1, 陈琛1, 施定基2
1. 北京中医药大学 中药学院生物制药系 北京 100102;
2. 中国科学院植物研究所 北京 100093
The Genetic Transformation System in Model Species Physcomitrella patens
WANG Yun-yang1, WANG Chun-mei1, CHEN Chen1, SHI Ding-ji2
1. Department of Biopharmaceuticals, School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100102,China;
2. Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
 全文: PDF(484 KB)   HTML
摘要:

苔藓植物小立碗藓是迄今发现的同源重组率最高的陆生植物,堪与酵母媲美,具有"绿色酵母"之称。高的同源重组频率、简单的发育模式以及单倍体配子体为主的生活史使其渐渐成为研究生物学进程和发育模式的新型模式生物。现对近年来小立碗藓遗传转化系统研究的进展进行总结和分析,为相关研究工作者充分利用这一体系提供帮助。对小立碗藓遗传表达系统的载体构建、转化方法及宿主细胞准备等方面的进展进行了综述,对小立碗藓在基因打靶方面的应用进行了简要总结。

关键词: 小立碗藓遗传转化载体构建转化方法    
Abstract:

Gene-targeting efficiency in the land plant Physcomitrella patens (Bryophyta) can only be compared with that observed in Saccharomyces cerevisiae. Physcomitrella patens, as the new "green yeast", might well become a major tool for functional genomic studies of multicellular eukaryotes. In addition, the relatively simple developmental pattern and the haploid gametophyte in the life history make it a suitable genetic tool. Molecular tools and genetic information are rapidly developing for P. patens. The current knowledge of Physcomitrella patens transformation system including the construction of vector, the transformation method and the preparation of the host cells are reviewed. The application of the Physcomitrella patens genetic transformation system was exampled at the last.

Key words: Physcomitrella patens    Genetic transformation    Vector construction    Transformation methods
收稿日期: 2011-09-27 出版日期: 2012-01-25
ZTFLH:  Q78  
基金资助:

教育部留学回国人员科研启动基金(JYB22-XS030,2009JYB22-XS023)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

汪运洋, 王春梅, 陈琛, 施定基. 模式生物小立碗藓遗传转化系统的研究进展[J]. 中国生物工程杂志, 2012, 32(01): 103-108.

WANG Yun-yang, WANG Chun-mei, CHEN Chen, SHI Ding-ji. The Genetic Transformation System in Model Species Physcomitrella patens. China Biotechnology, 2012, 32(01): 103-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I01/103


[1] 1. Reski R, Cove D J. Physcomitrella patens. Current Biol, 2004, 14(7):261-262.

[2] Schaefer D G, Zryd J P. The moss Physcomitrella patens, now and then. Plant Physiol, 2001, 127(4):1430-1438.

[3] Rothstein R. Targeting, disruption, replacement and allele rescue:integrative DNA transformation in yeast. Methods Enzymol, 1991, 194:281-301.

[4] Doetschman T, Gregg R G, Maeda N, et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 1987, 330:576-578.

[5] Thomas K R, Capecchi M R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3):503-512.

[6] Schaefer D G, Zryd J P. Efficient gene targeting in the moss Physcomitrella patens. Plant J, 1997, 11(6):1195-1206.

[7] Rensing S A, Lang D, Zimmer A D, et al. The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 2008, 319 (5859):64-69.

[8] Decker E L, Reski R. Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng,2008, 31(1):3-9.

[9] Schaefer D G. A new moss genetics:targeted mutagenesis in Physcomitrella patens. Plant Biol, 2002, 53:477-501.

[10] Vioque A. Transformation of cyanobacteria. Adv Ex PMed Biol, 2007, 616:12-22.

[11] Schaefer D G, Zryd J P, Knight C D, et al. Stable transformation of the moss Physcomitrella patens. Mol Gen Genet,1991, 226(3):418-424.

[12] 王先平,胡勇,何奕昆.基因定点整合技术及其在苔藓研究中的进展. 植物学通报. 2003, 20 (2):137-143. Wang X P, Hu Y, He Y K. The research of gene targeting in moss. Chinese Bulletin of Botany. Chinese Bulletin of Botany, 2003, 20 (2):137-143.

[13] 施定基, 冉亮, 宁叶,等. 苔藓分子生物学的一些进展.贵州科学. 2001,19 (4):1-5. Shi D J, Ran L, Ning Y, et al. Some progress in molecular biology of bryophytes. Guizhou Science. 2001,19 (4):1-5.

[14] Struhl K. The new yeast genetics. Nature,1983, 305(5933):391-397.

[15] Muller U. Ten years of gene targeting:targeted mouse mutants, from vector design to phenotype analysis. Mech Dev, 1999, 82(1-2):3-21.

[16] Dale E C, Ow D W. Intra- and intermolecular site-specific recombination in plants mediated by bacteriophage P1 recombinase.Gene, 1990. 91:79-85.

[17] Gritz L, Davies J. Plasmid-encoded hygromycin B resistance:the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene, 1983. 25(2-3):179-188.

[18] Kammerer W, Cove D J. Genetic analysis of the result of re-transformation of transgenic lines of the moss, Physcomitrella patens. Mol Gen Genet, 1996,250(3):380-82.

[19] Zeidler M, Gatz C, Hartmann E, et al. Tetracycline-regulated reporter gene expression in the moss Physcomitrella patens. Plant Mol Biol,1996,30(1):199-205.

[20] Knight C D, Sehgal A, Atwal K, et al. Molecular responses to abscissic acid and stress are conserved between moss and cereals. Plant Cell,1995,7(5):499-506.

[21] Knight C D. Moss, Molecular Tools for Phenotypic Analysis. In Encyclopedia of Cell Technology, ed. New York:Wiley. 2000, 936-944.

[22] Andreas W, Friedrich A, Rodriguez-Franco M. High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Δ-fuc-t Δ-xyl-t mutant. Plant Biotechnology Journal, 2007,5(3):389-401.

[23] Holtorf H, Hohe A, Wang H L,et al. Promoter subfragments of the sugar beet V-type H+-ATPase subunit c isoform drive the expression of transgenes in the moss Physcomitrella patens. Plant Cell Reports, 2002, 21(4):341-346.

[24] Saidi Y, Finka A, Chakhporanian M, et al.Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter:a tool for plant research and biotechnology. Plant Molecular Biology, 2005,59(5):697-711.

[25] Weise A, Rodriguez-Franco M, Timm B, et al. Use of Physcomitrella patens actin 5'regions for high transgene expression:importance of 5'introns. Appl Microbiol Biotechnol, 2006,70(3):337-345.

[26] Anterola A, Shanle E, Perroud PF, et al. Production of taxa-4(5), 11(12)-diene by transgenic Physcomitrella patens. Transgenic Res,2009,18(4):655-660.

[27] Verena H, Claudia M H, Wolfgang J, et al. Quantitative promoter analysis in Physcomitrella patens:a set of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnology, 2004, 4(1):13.

[28] Schaefer D G. A new moss genetics:targeted mutagenesis in Physcomitrella patens. Plant Biol, 2002,53:477-501.

[29] Girke T, Schmidt H, Zhringer U, et al. Identification of a novel 16-acyl-grou Pdesaturase by targeted disruption in Physcomitrella patens. Plant J. 1998,15(1):39-48.

[30] Girod P A, Fu H Y, Zryd J P, et al. Multiubiquitin chain-binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. Plant Cell, 1999,11(8):1457-141471.

[31] Ashton N W, Champagne C E M, Weiler T, et al. The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol, 2000, 146:391-402.

[32] Nishiyama T, Hiwatashi Y, Sakakibara K, et al. Tagged mutagenesis and gene tra Pin the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res, 2000,7(1):9-17.

[33] Hiwatashi Y, Nishiyama T, Fujita T, et al. Establishment of gene tra Pand enhancer-tra Psystems in the moss Physcomitrella patens. Plant J, 2001,28(1):105-116.

[34] Schaefer D G. Gene targeting in Physcomitrella patens. Current Opinion in Plant Biology, 2001, 4:143-150.

[35] Martin A, Lang D, Hanke S T, et al. Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing. Mol Plant, 2009, 2(6):1359-1372.

[36] Wiedemann G, Hermsen C, Melzer M. Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett, 2010, 584(11):2271-2278.

[37] Stumpe M, Gbel C, Faltin B, et al. The moss Physcomitrella patens contains cyclopentenones but no jasmonates:mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol, 2010, 188(3):740-749.

[38] Büttner-Mainik A, Parsons J, Jérme H, et al. Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol J, 2011, 9(3):373-383.

[39] Colpitts C C, Kim S S, Posehn S E, et al. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol, 2011,129(4):855-868.

[40] Sawahel W, Onde S, Knight C, et al. Transfer of foreign DNA into Physcomitrella patens protonemal tissue by using the gene gun. Plant Mol Biol Rep, 1992, 10:314-315.

[41] Cho S H, Chung Y S, Cho S K, et al. Particle bombardment mediated transformation and GF Pexpression in the moss Physcomitrella patens. Molecules and Cells, 1999, 9:14-19.

[42] Bezanilla M, Pan A, Quatrano R S. RNA interference in the moss Physcomitrella patens. Plant Physiology, 2003, 133:470-474.

[43] Cove D J, Knight C D, Lamparter T. Mosses as model systems. Trends in Plant Sci, 1997, 2(3):99-105.

[44] Reski R. Molecular genetics of Physcomitrella. Planta, 1999, 208(3):301-309.

[45] Ashton N W, Grimsley N H, Cove D J. Analysis of gametophytic development in the moss Physcomitrella patens,using auxin and cyokinin resisitant mutants. Planta, 1979,144(5):427 -435.

[46] Denecke J, Botterman J, Deblaere R. Protein secretion inplant cells can occur via a default pathway. Plant Cell, 1990, 2(1):51-59.

[47] Decker E L, Reski R. The moss bioreactor. Current Opinion in Plant Biology, 2004, 7(2):166-170.

[48] Decker E L, Reski R. Moss bioreactors producing improved biopharmaceuticals. Current Opinion in Biotechnology, 2007, 18(5):393-398.

[49] Decker E L, Reski R. Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng. 2008, 31(1):3-9.

[50] Liu Y, Vidali L. Efficient polyethylene glycol (PEG) mediated transformation of the moss physcomitrella patens. J Vis Exp,2011,(50):1-4.

[51] Stre PPR, Scholz S, Kruse S, et al. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA,1998, 95:4368-4373.

[52] Khandelwal A, Cho S H, Marella H, et al. Role of ABA and ABI3 in desiccation tolerance. Science,2010,327(5965):546.

[1] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[2] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[3] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[4] 田聪慧, 谢雪梅, 李英, 尹晓东, 韩军, 李军. 基于IRES序列的多基因共表达载体构建[J]. 中国生物工程杂志, 2017, 37(7): 97-104.
[5] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[6] 曾斯雨, 施天穹, 石焜, 任路静, 黄和, 纪晓俊. 高山被孢霉遗传操作系统的构建与应用[J]. 中国生物工程杂志, 2016, 36(7): 112-116.
[7] 左志宇, 辛灵彪, 杨洁, 王鑫廷. SND1转基因小鼠的构建[J]. 中国生物工程杂志, 2016, 36(4): 97-103.
[8] 朱雪瑞, 季静, 王罡, 马志刚, 杨丹, 金超, 李辰. 马铃薯不同组织的诱导分化及其对遗传转化效率的影响[J]. 中国生物工程杂志, 2016, 36(10): 53-59.
[9] 宗鑫, 胡汪洋, 汪以真. 猪髓样分化因子MyD88特异性shRNA干扰载体的构建筛选及干扰效果评价[J]. 中国生物工程杂志, 2015, 35(7): 1-7.
[10] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[11] 周于聪, 谢秋瑾, 宋凯, 杨朝晖, 陈捷, 李雅乾. 改良ATMT转化技术在深绿木霉基因敲除中的应用[J]. 中国生物工程杂志, 2015, 35(12): 58-64.
[12] 秦翠鲜, 陈忠良, 桂意云, 汪淼, 周建辉, 廖青, 李杨瑞, 黄东亮. 农杆菌介导甘蔗愈伤组织遗传转化体系的优化[J]. 中国生物工程杂志, 2013, 33(9): 66-72.
[13] 朱彩虹, 李水根, 齐力旺, 韩素英. 农杆菌介导的日本落叶松胚性细胞遗传转化研究[J]. 中国生物工程杂志, 2013, 33(5): 75-80.
[14] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[15] 霍培, 季静, 王罡, 关春峰, 金超. 番茄红素β-环化酶基因的玉米转化及 后代遗传分析[J]. 中国生物工程杂志, 2012, 32(07): 43-48.