Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (5): 126-130    
综述     
硅藻纳米技术
夏嵩, 张成武
暨南大学水生生物研究中心 广州 510632
Diatom Nanotechnology
XIA Song, ZHANG Cheng-wu
Institute of Hydrobiology, Ji'nan University, Guangzhou 510632, China
 全文: PDF(1053 KB)   HTML
摘要:

硅藻是一类微小的单细胞藻类,具有由无定形氧化硅组成的坚硬细胞壁(硅壳)。硅壳具有精致的形态和结构,且随硅藻种类和生长条件不同而千变万化。目前估算的硅藻种类超过200 000种,其独特的纳米结构对光子结构、化学生物传感器、新纳米材料和器件的开发具有启发意义。同时硅藻形态形成学和分子生物学的研究,可以推动硅质材料的仿生合成、化学转化及模板技术的发展。因此设计和生产特殊形态的硅壳,在纳米技术领域具有广泛应用前景。

关键词: 硅藻生物材料生物光子结构化学/生物传感纳米器件    
Abstract:

Diatoms are microscopic, single-celled algae that possess rigid cell walls (frustules) composed of amorphous silica. The intact diatom frustules possess intricate nanoscale features. Depending on the species of diatom and the growth conditions, the frustules can display different morphologies. The almost 200 000 different diatom species feature unique frustule architectures that are instructive for construction of photonic structures, chemo/biosensing and new nano-devices. The researches of diatom molecular biology and frustule formation are instructive for development of biomimetic synthesis of silica-based materials, chemical transformations and templating techniques. It is possible to design and produce specific frustules that have a wide rang of applications in nanotechnology.

Key words: Biomaterials    Biophotonic structures    Chemo/biosensing    Nano-device    Diatom
收稿日期: 2010-10-14 出版日期: 2011-05-27
ZTFLH:  TB34  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

夏嵩, 张成武. 硅藻纳米技术[J]. 中国生物工程杂志, 2011, 31(5): 126-130.

XIA Song, ZHANG Cheng-wu. Diatom Nanotechnology. China Biotechnology, 2011, 31(5): 126-130.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I5/126


[1] Parkinson J, Gordon R. Beyond micromachining: the potential of diatoms. Nanotechnology, 1999, 17: 190-196.

[2] Werner D, The Biology of Diatom.University of California Press: 1977.

[3] Mann D G, Droop S J M, Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 1996, 336: 19-32.

[4] Losic D, James G, Mitchell, et al. Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater, 2009, 21: 2947-2958.

[5] Hildebrand M, Doktycz M J, Allison D P. Application of AFM in understanding biomineralformation in diatoms. Pflugers Arch - Eur J Physiol, 2008, 456: 127-137.

[6] Gebeshuber I C, Kindt J H, Thompson J B, et al. Atomic force microscopy study of living diatoms in ambient conditions. Journal of Microscopy, 2003, 212: 292-299.

[7] Gordon R, Drum R W. The chemical basis for diatom morphogenesis. Int Rev Cytol, 1994, 150: 243-372.

[8] Parkinson J, Brechet Y, Gordon R. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta, 1999, 1452: 89-102.

[9] Tesson B, Hildebrand M. Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica:Substructure formation and the role of microfilaments. J Struct Bio, 2010,169(1):62-74.

[10] Gordon R, Losic D, Tiffany M A, et al. The glass menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology. 2008, 27(2): 116-127.

[11] Scala S, Bowler C. Molecular insights into the novel aspects of diatom biology. Cellular and Molecular Life Sciences, 2001, 58: 1666-1673.

[12] Kroger N. Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Current Opinion in Chemical Biology, 2007, 11: 662-669.

[13] Frigeri L G, Radabaugh T R, Haynes P A, et al. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana. Molecular and Cellular Proteomics. 2006, 5: 182-193.

[14] Stefano L D, Maddalena P, Moretti L, et al. Nano-biosilica from marine diatoms: A brand new materialfor photonic applications. Superlattices and Microstructures, 2009, 46: 84-89.

[15] Butcher K S A, Ferris J M, Phillps M R, et al. A luminescence study of porous diatoms. Materials Science and Engineering C, 2005, 25: 658-663.

[16] Setaro A, Lettieri S, Maddalena P, et al. Highly sensitive optochemical gas detection by luminescent marine diatoms. Appl Phys Lett, 2007, 91: 051921.

[17] Townley H E, Parker A R, Helen W C. Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater, 2008, 18:369-374.

[18] Stefano L D, Lamberti A, Rotiroti L, et al. Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. Acta Biomaterialia, 2008, 4: 126-130.

[19] Stefano L D, Rotiroti L, Stefano M D, et al. Marine diatoms as optical biosensors. Biosensors and Bioelectronics, 2009, 24: 1580-1584.

[20] Gale D K, Gutu T, Jiao J, et al. Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv Funct Mater, 2009, 19: 926-933.

[21] Sandhage K H, Dickerson M B, Huseman P M, et al. Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv Mater, 2002, 14(6) : 429-433.

[22] Bao Z H, Weatherspoon M R, Shian S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 2007, 446(8): 172-175.

[23] Toster J, Iyer K S, Burtovyy R, et al. Regiospecific assembly of gold nanoparticles around the pores of diatoms: toward three-dimensional nanoarrays. J Am Chem Soc, 2009, 131: 8356-8357.

[24] Losic D, Mitchell J G, Lal R, et al. Rapid fabrication of micro- and nanoscale patterns by replica molding from diatom biosilica. Adv Funct Mater, 2007, 17: 2439-2446.

[25] Perez-Cabero M, Puchol V, Beltran D, et al. Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. Carbon, 2008, 46: 297-304.

[26] Qin T, Gutu T, Jiao J, et al. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. ACS Nano, 2008, 2(6): 1296-1304.

[27] Jeffryes C, Gutu T, Jiao J, et al. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Materrials Science and Engineering C, 2008, 28: 107-118.

[28] Safonava T A, Annenkov V V, Chebykin E P, et al. Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of Germanic acid. Biochemistry(Moscow), 2007, 72: 1261-1269.

[29] Jeffryes C, Solanki R, Rangineni Y, et al. Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv Mater, 2008, 20: 2633-2637.

[30] Jeffryes C, Gutu T, Jiao J, et al. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Acs Nano, 2008, 2(10): 2103-2112.

[31] Wang W, Gutu T, Gale D K, et al. Self-assembly of nanostructured diatom microshells into patterned arrays assisted by polyelectrolyte multilayer deposition and inkjet printing. J Am Chem Soc, 2009, 131(12): 4178-4179.

[32] Umemura K, Noguchi Y, Ichinose T, et al. Diatom cells grown and baked on a functionalized mica surface. J Biol Phys, 2008, 34: 189-196.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[5] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.
[6] 沈婷婷, 张光亚. 智能多肽的自组装机理及其生物学应用[J]. 中国生物工程杂志, 2014, 34(5): 87-91.
[7] 董茂盛, 王佃亮. 生物支架材料——组织工程连载之二[J]. 中国生物工程杂志, 2014, 34(06): 122-127.
[8] 王德平. “十一五”863计划“纳米生物材料研发”重点项目课题布局及实施情况分析[J]. 中国生物工程杂志, 2012, 32(10): 135-138.
[9] 夏嵩 张成武. 硅藻纳米技术研究概况[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[10] 赵玉华 韩朝龙 王晓峥 许程剑 曹小红. 硅藻发酵生产二十碳五烯酸基础培养基的选择研究[J]. 中国生物工程杂志, 2009, 29(12): 69-73.
[11] 李晓强,莫秀梅,范存义. 神经导管研究与进展[J]. 中国生物工程杂志, 2007, 27(7): 112-116.
[12] 曹小红,赵玉华,鲁梅芳,雷静,王春玲. 硅藻变温发酵生产二十碳五烯酸的研究[J]. 中国生物工程杂志, 2007, 27(12): 57-60.
[13] 张然, 徐慰倬, 孔平, 许红韬, 李宁. 转基因动物应用的研究现状与发展前景[J]. 中国生物工程杂志, 2005, 25(8): 16-24.
[14] 王馨, 屈雷, 窦忠英, 杨学义. 组织工程生物支架材料[J]. 中国生物工程杂志, 2003, 23(10): 15-18.
[15] 姜忠义, 王艳强. 纳米生物技术[J]. 中国生物工程杂志, 2002, 22(6): 75-78.