Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 122-127    DOI: 10.13523/j.cb.20140618
讲座     
生物支架材料——组织工程连载之二
董茂盛1, 王佃亮2
1. 第二炮兵总医院 北京 100088;
2. 第二炮兵总医院药学部组织工程与再生医学实验室 北京 100088
Biological Scaffold Materials
DONG Mao-sheng1, WANG Dian-liang2
1. Department of General Surgery, The Second Artillery General Hospital, Beijing 100088, China;
2. Tissue Engineering and Regenerative Medicine Laboratory, Department of Pharmacy, The Second Artillery General Hospital, Beijing 100088, China
 全文: PDF(465 KB)   HTML
摘要:

具有三维结构的支架材料是组织工程的核心内容之一。现有组织工程支架可分为天然生物材料、合成有机材料和无机材料三类。支架材料近年来研究十分活跃,不仅在组织工程的最早产品人工皮肤领域进行了更为完善的研究和开发,同时在诸如人工骨、软骨、神经、血管、皮肤、肝、脾、肾、膀胱等方面进行了大量研究和探索。与普通组织工程支架需要预先制备并在体外成型不同,近年来在骨和软骨组织工程实践中兴起的可注射支架具有许多优势,是未来组织工程支架发展的重要方向之一。

关键词: 组织工程支架三维结构细胞外基质天然生物材料可注射支架    
Abstract:

The scaffold material that have three-dimensional structure is another main content of tissue engineering. Current tissue engineering scaffolds are divided into three kinds including natural biomaterial, synthesized organic material and inorganic material. Scaffold material is a hot research topic in recent years, which is more perfectly studied and developed in the field of artificial skin that is the earliest tissue engineering product and made much investigation and exploration in other fields such as artificial bone, cartilage, nerve, blood vessel, skin, liver, spleen, kidney and bladder, etc. Unlike traditional tissue engineering scaffolds that need to be previously fabricated and shaped up in vitro, the injectable scaffolds that have grown up in bone and cartilage tissue engineering practices have many advantages, which is one of the important development direction of future tissue engineering scaffolds.

Key words: Tissue engineering scaffold    Three-dimensional structure    Extracelluar matrix    Natural biomaterial    Injectable scaffold
收稿日期: 2014-02-14 出版日期: 2014-06-25
ZTFLH:  Q819  
通讯作者: 王佃亮     E-mail: wangdianliang@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

董茂盛, 王佃亮. 生物支架材料——组织工程连载之二[J]. 中国生物工程杂志, 2014, 34(06): 122-127.

DONG Mao-sheng, WANG Dian-liang. Biological Scaffold Materials. China Biotechnology, 2014, 34(06): 122-127.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140618        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/122


[1] Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine, 2013,8: 337-350.

[2] Chantarapanich N, Puttawibul P, Sucharitpwatskul S, et al. Scaffold Library for Tissue Engineering: A Geometric Evaluation. Comput Math Methods Med, 2012, 2012: 407805.

[3] Leach J B, Wolinsky J B, Stone P J, et al. Crosslinked α-elastin biomaterials:towards a processable elastin mimetic scaffold. Acta Biomaterialia, 2005,1:155-164.

[4] Valarmathi M T, Yost M J, Goodwin R L, et al. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Biomaterials, 2008,29: 2203-2216.

[5] George J, Onodera J, Miyata T. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. Journal of Biomedical Materials Research Part A, 2008, 87(4):1103-1111.

[6] Linnes M P, RatnerB D, Giachelli C M. A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials, 2007,28:5298-5306.

[7] Zhang J, Liu L, Gao Z, et al. Novel approach to engineer implantable nasal alar cartilage employing marrow precursor cell sheet and biodegradable scaffold. Journal of Oral and Maxillofacial Surgery, 2009, 67(2):257-264.

[8] Jaklenec A,Wan E,Murray M E, et al. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials, 2008,29:185-192.

[9] Kanczler J M, Barry J M, Ginty P, et al. Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochemical and Biophysical Research Communications 2007,352:135-141.

[10] Yang J, Webb A R, Pickerill S J, et al.Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials, 2006, 27:1889-1898.

[11] Lopez-Heredia M A, Sohier J, Gaillard C, et al. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 2008, 29:2608-2615.

[12] Chen Q Z, Rezwan K, Francon V, et al. Surface functionalization of bioglass-derived porous scaffolds.Acta Biomaterialia, 2007,3:551-562.

[13] Jones J R, Ehrenfried L M, Hench L L.Optimising bioactive glass scaffolds for bone tissue engineering.Biomaterials, 2006,27:964-973.

[14] Mushy W L, Mooney D J.Bioinspired growth of crystalline carbonate apatite on biodegradable polymer's strate.Journal of the American Chemical Society, 2002, 124(9):1910-1917.

[15] Papenburg B J, Vogelaar L, Bolhuis-Versteeg L A, et al. One-step fabrication of porous micropatterned scaffolds to control cell behavior. Biomaterials, 2007, 28(11), 1998-2009.

[16] Tili R S, Gümüsdereliolu M G. Evaluation of RGD- or EGF-immobilized chitosan scaffolds for chondrogenic activity. International Journal of Biological Macromolecules, 2008,43:121-128.

[17] Blaker J J, Knowles J C, Day R M. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterialia, 2008,4:264-272.

[18] Wang Y, Kim U J, Blasioli D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials, 2005, 26:7082-7094.

[19] Nieponice A, Soletti L, Guan J, et al.Development of a tissue-engineered vascular graft combining a biodegradable scaffold,muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials, 2008, 29:825-833.

[20] Danielsson C, Ruault S, Basset-Dardare A, et al. Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cells. Biomaterials, 2006,27:1054-1060.

[21] Kretlow J D, Young S, Klouda L, et al. Injectable biomaterials for regenerating complex craniofacial tissues.Adv Mater, 2009, 21(32-33):3368-3393.

[22] Westhaus E, Messersmith P B. Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials 2001,22(5):453-462.

[1] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[2] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.
[3] 谭玉静,洪枫,邵志宇. 细菌纤维素在生物医学材料中应用的研究进展[J]. 中国生物工程杂志, 2007, 27(4): 126-131.
[4] 李新建,曹以诚,杜正平,杨化强,张珍武,卓敏. 新型真核表达质粒pcDNA6/myc-his-EGFP B 的构建及其在重组基因表达中的应用[J]. 中国生物工程杂志, 2006, 26(12): 22-28.
[5] 何创龙, 王远亮, 杨立华, 张军, 夏烈文. 骨组织工程天然衍生细胞外基质材料[J]. 中国生物工程杂志, 2003, 23(8): 11-17.
[6] 张英, 崔磊, 刘伟, 曹谊林. 力学环境对软骨基质代谢的影响[J]. 中国生物工程杂志, 2003, 23(7): 80-83.
[7] 任蕴芳. CD_(126)功能域三维结构研究进展[J]. 中国生物工程杂志, 1997, 17(3): 18-20.
[8] 陈小明, 杨胜利. 分子伴侣(MolecularChaperones)与蛋白质的折叠[J]. 中国生物工程杂志, 1993, 13(1): 30-35.
[9] 禾子. 美国“发现者”号宇宙飞船带回来的蛋白质晶体[J]. 中国生物工程杂志, 1989, 9(3): 53-53.
[10] 静国忠. 胶原蛋白基因的结构和调节[J]. 中国生物工程杂志, 1982, 2(3): 19-22.