Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (5): 131-137    
综述     
罗伊氏乳杆菌的益生功能
庞洁, 周娜, 刘鹏, 王安如
北京大北农科技集团股份有限公司饲用微生物工程国家重点实验室 北京 100193
Beneficial Effects of Lactobacillus reuteri to Human and Animals
PANG Jie, ZHOU Na, LIU Peng, WANG An-ru
Beijing Da Bei Nong Technology Group Co. Ltd. State Key Laboratory of Direct-fed Microbial Engineering, Beijing 100193, China
 全文: PDF(1072 KB)   HTML
摘要:

罗伊氏乳杆菌是目前已报道的几乎可存在于所有脊椎动物和哺乳动物肠道内的乳酸杆菌,是具有益生功效的肠道益生菌。通过对罗伊氏乳杆菌良好的肠道定植能力和其产生的罗伊氏菌素的介绍,阐明其可能的益生作用机理。重点论述了罗伊氏乳杆菌促进人类和动物健康功能的研究进展,并探讨了今后罗伊乳杆菌益生菌制剂的工业化发展趋势。

关键词: 罗伊氏乳杆菌黏附罗伊氏菌素益生功能    
Abstract:

Lactobacillus reuteri is reported to inhabit the gastrointestinal tract of almost all kinds of vertebrates and mammals by establishing a symbiotic relationship with other bacteria. The adhesion and colonization capability of Lactobacillus reuteri to the mucosa of gastrointestinal tract was introduced here. Reuterin-a wide-spectrum antibacterial substance which is produced by Lactobacillus reuteri and probable acting mechanism of Lactobacillus reuteri was described. The health effects of Lactobacillus reuteri to human and animals were especially emphasized and the industrial development of Lactobacillus reuteri probiotics in future was also discussed.

Key words: Lactobacillus reuteri    Adhesion    Reuterin    Beneficial effect
收稿日期: 2010-12-23 出版日期: 2011-05-27
ZTFLH:  Q93  
基金资助:

北京市海淀区重大科技研发资助项目(K20100130Z)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

庞洁, 周娜, 刘鹏, 王安如. 罗伊氏乳杆菌的益生功能[J]. 中国生物工程杂志, 2011, 31(5): 131-137.

PANG Jie, ZHOU Na, LIU Peng, WANG An-ru. Beneficial Effects of Lactobacillus reuteri to Human and Animals. China Biotechnology, 2011, 31(5): 131-137.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I5/131


[1] Chen F Y, Lee M T, Huang H W. Sigmoidal concentration dependence of antimicrobial peptide activities: A case study on alamethicin. Biophysical Journal, 2002, 82:908-914.

[2] Miyoshi Y, Okada S, Uchimura T, et al. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci.Biotechnol.Biochem, 2006, 70(7):1622-1628.

[3] Roos S, Jonsson H. A high-molecular-mass cell-surface protein from Lactocbacillus reuteri 1063 adheres to mucus components. Microbiology, 2002, 148; 433-442.

[4] Caglar E, Topcuoglu N, Cildir S K, et al. Oral colonization by Lactobacillus reuteri ATCC 55730 after exposure to probiotics. Int J Paediatr Dent, 2009, 19(5):377-381.

[5] Bjorkman P J. Colonization of the human gastrointestinal tract by two formulations of Lactobacillus reuteri dissertation. Helsinki, Finland: Univ. of Helsinki, 1999,1025-1035.

[6] Jacobsen C N, Rosenfeldt Nielsen V, Hayford A E, et al. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol, 1999, 65: 4949-4956.

[7] Ouwehand A C, Conway P L. Purification and characterization of a compound produced by Lactobacillus fermentum that inhibits the adhesion of K88 expressing Escherichia coli to porcine ileal mucus. J Appl Bacteriol, 1996: 311-318.

[8] Axelsson L, Chung T C, Dobrogosz W J, et al. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecol Health Dis, 1989, 2: 131-136.

[9] Talarico T L, Dobrogosz W J. Purification and characterization of glycerol dehydratase from Lactobacillus reuteri. Appl Environ Microbiol, 1990, 56: 1195-1197.

[10] Talarico T L, Axelsson L, Novotny J, et al. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol:NAD oxidoreductase. Appl Environ Microbiol 1990, 56: 943-948.

[11] Talarico T L, Dobrogosz W J. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother, 1989, 33: 674-679.

[12] Tong I T, Cameron D C. Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumonia dha regulon genes. Appl Environ Microbiol, 1992, 34: 149-159.

[13] Spinler J K, Taweechotipatr M, Rognerud C L, et al. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 2008, 14(3):166-171.

[14] Dobrogosz W J, Lindgren S E.Method of determining the presence of an antibiotic produced by Lactobacillus reuteri.United States Patent 5352586, October 4,1994.

[15] EI-Ziney N G, Debevere J M. The effect of reuterin on Listeria monocytogenes and Escherichia coli 0157:H7 in milk and cottage cheese. J Food Prot, 1998, 61: 1275-1280.

[16] Dobiogosz W J, Casas I A. Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microbial Ecology in Health and Disease, 2000, 12:247-285.

[17] Gill H S, Rutherfurd K J, Prasad J, et al. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr, 2000, 83:167-176.

[18] Pessi T, Sutas Y, Hurme M, et al. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy, 2000, 30:1804-1808.

[19] Liu Y, Fatheree N Y, Mangalat N, et al. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol, 2010, 299: G1087-1096.

[20] Alak J I, Wolf B W, Mdurvwa E G, et al. Effect of Lactobacillus reuteri on intestinal resistance to Cryptosporidium parvum infection in a murine model of acquired immunodeficiency syndrome. J Infect Dis, 1997, 175: 218-221 .

[21] Ungar B L, Kao T C, Burris J A, et al. Cryptosporidium infection in an adult mouse model. Independent roles for IFN-gamma and CD4+ T Iymphocytes in protective immunity. J Immunol, 1991, 147: 1014-1022.

[22] Wu C M, Chung T C, Mice protected by oral immunization with Lactobacillus reuteri secreting fusion protein of Escherichia coli enterotoxin subunit protein. FEMS Immunology Medical Microbiology, 2007, 50(3):354-365.

[23] Madsen K L, Doyle J S, lewell L D, et al. Lactobacillus species prevents colitis in interleukin l0 gene-deficient mice. Gastroenterol, 1999, 116: 1107-1114.

[24] Anukam K C, Hayes K, Summers K, et al. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12(p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: A Two-Case Study.Advances in Urology,2009,5:1151-1155.

[25] Fabia R, Willen R, Ar'Rajab A, et al. Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur Surg Res, 1992, 24: 211-225.

[26] Fabia R, Ar'Rajab A, Johansson M L, et al. Impairrnent of bacterial flora in human ulcerative coiltis and experimental colitis in the rat. Digestion, 1993, 54: 248-255.

[27] Mao Y, Nobaek S, Kasravi B, et al. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterol, 1996, 111: 334-344.

[28] Mao Y, Yu J L, Lungh A, et al. Intestinal immune response to oral administration of Lactobacillus reuteri R2LC, Lactobacillus plantarum DSM 9843, pectin and oatbase on methotrexate-induced enterocolitis in rats. Microbial Ecol Health Dis, 1996, 9: 261-270.

[29] Casas I A, Edens F W, Parkhurst C R, et al. Probiotic administrations of Lactobacillus reuteri moderate avian growth depression in Turkeys. Japan Bifidus foundation, 1998,17(2):125-131.

[30] Dunham H J, Casas I A, Edens F W, et al. Avian growth depression in chickens induced by environmental, microbiological, or nutritional stress is moderated by probiotic administrations of Lactobacillus reuteri. Biosci Microflora, 1998, 17: 133-139.

[31] Dobrogosz W J, Casas I A, Pagano G A, et al. Lactobacillus reuteri and the enteric microbiota. London: Macmillan, 1989: 283-92.

[32] Casas I A, Edens F W, Parkhurst C R, et al. Probiotic treatment with Lactobacillus reuteri protects commerciai turkeys from avian growth depression. Biosci Microflora, 1998, 17: 141-147.

[33] Blanchard P, Gill P, Schulze H. Efficacy of Lactobacillus reuteri 1063-IA in pre and post-weaning pigs. Hertfordshire SG5 4JG (UK): MLC Stotfold Pig Development Unit,1998,9801-9815.

[34] Tazume S, Ozawa A, Yamamoto T. Ecological study on the intestinal bacterial flora of patients with diarrhea. Clin Infect Dis, 1993, 16: 77S-82S .

[35] Romano C, Ferrau V, Cavataio F, et al. Lactobacillus reuteri in children with functional abdominal pain. Journal of Paediatrics and Child Health, 2010,7:1440-1454.

[36] Isolauri E, luntunen M, Rautanen T, et al. A human Lactobacillus strain (Lactobacilllls casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics, 1991, 88: 90-97.

[37] Liu Y Y, Fatheree N Y, Mangalat N, et al. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol, 2010, 299: G1087-G1096.

[38] Shornikova A V, Casas l A, Isolauri E, et al. Lactobacillus reureri as a therapeutic agent in acute diarrhea in young children. J Pediatr Gastroenterol, 1997, 24: 399-404.

[39] Shornikova A V, Casas l A, Mykkanen H, et al. Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr Infect Dis, 1997, 16:1103-1107.

[40] Coccorullo P, Strisciuglio C, Martinelli M, et al. Lactobacillus reuteri (DSM 17938) in infants with functional chronic constipation: A double-blind, randomized, placebo-controlled Study. J Pediatr, 2010, 157(4):598-602.

[41] Savino F, Cordisco L, Tarasco V, et al. Lactobacillus reuteri DSM 17938 in infantile colic: A randomized, double-blind, placebo-controlled Trial. PEDIATRICS, 2010, 126: e526-e533.

[42] Savino F, Pelle E, Palumeri E, et al. Lactobacillus reuteri (American Type Culture Collection Strain 55730) Versus Simethicone in the Treatment of Infantile Colic: A Prospective Randomized Study. Pediatrics, 2007, 119:124-130.

[43] Indrio F, Riezzo G, Raimondi F, et al. Lactobacillus reuteri accelerates gastric emptying and improves regurgitation in infants. Eur J Clin Invest, 2010,41(4):417-422.

[1] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[2] 郭乐, 刘昆梅, 李敏, 赵辉, 徐广贤, 段相国, 韩学波, 杨华, 王玉炯. 产肠毒素大肠杆菌亚单位疫苗3STaM(G)-K99和3STaM(S)-K99的纯化及其免疫学性质的研究[J]. 中国生物工程杂志, 2013, 33(7): 18-24.
[3] 张小梅, 方廖琼, 王智彪. 小鼠胚胎干细胞对黑色素瘤细胞体外生物学行为的影响[J]. 中国生物工程杂志, 2012, 32(6): 7-12.
[4] 庞洁 周娜 刘鹏 王安如. 罗伊氏乳杆菌益生功能的研究进展[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[5] 卢燕 石屹峰. 利用噬菌体表面展示技术筛选转铁蛋白黏附肽的研究[J]. 中国生物工程杂志, 2010, 30(04): 89-94.
[6] 郭乐 李敏 王玉炯. 大肠杆菌耐热性肠毒素STI三重串联突变体与黏附素K99融合基因的表达研究[J]. 中国生物工程杂志, 2010, 30(04): 26-32.
[7] 李国才,王劲松,朱立天,王晓红,焦红梅,潘兴元,季明春. 淋病奈瑟菌对hCD46基因转染COS-1细胞的黏附[J]. 中国生物工程杂志, 2008, 28(4): 37-41.
[8] 戴功, 王丽梅, 杨新颖, 耿美玉. 多聚唾液酸转移酶研究进展[J]. 中国生物工程杂志, 2005, 25(9): 24-28.