Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 87-91    DOI: 10.13523/j.cb.20140512
综述     
智能多肽的自组装机理及其生物学应用
沈婷婷, 张光亚
华侨大学化工学院 厦门 361021
Self-assembly Mechanism and Biological Applications of Smart Peptides
SHEN Ting-ting, ZHANG Guang-ya
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
 全文: PDF(492 KB)   HTML
摘要:

智能多肽是指智能响应外界刺激并做出相应回应的多肽。由于其形成过程为自发的自组装,故智能多肽又可称为自组装多肽。智能多肽的氨基酸构成使其拥有良好的生物相容性及生物可降解性,作为构筑基元拼接成为功能性材料,在新型生物材料方面展示出了广阔的应用前景。概括了智能多肽的性质、自组装机理及应用,重点阐述了它在生物能源、生物医学工程和分离工程上的应用,以期在系统认识智能多肽的基础上,发掘其应用潜能,突破开发瓶颈。

关键词: 智能多肽自组装机制构筑基元生物材料类弹性蛋白多肽    
Abstract:

Stimuli-responsive peptides are referred as "smart" peptides capable of self-assembling into supramolecular structures that are responsive to environment changes. Such kinds of smart peptides can self-assemble spontaneously, so they are also called self-assembling peptides. Based on their property, smart peptides can be used as building blocks to construct materials possessing different conformations and biological functions. In this review, we presented the self-assembly mechanism of smart peptides,with a focus on the great potentials of smart peptides in many biological fields, such as biomedical engineering,as well as in energy applications,and bioseparation engineering.

Key words: Smart peptide    Self-assembled mechanism    Building blocks    Biomaterials    Elastin-like peptides
收稿日期: 2014-03-11 出版日期: 2014-05-25
ZTFLH:  Q51  
通讯作者: 张光亚     E-mail: zhgyghh@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈婷婷, 张光亚. 智能多肽的自组装机理及其生物学应用[J]. 中国生物工程杂志, 2014, 34(5): 87-91.

SHEN Ting-ting, ZHANG Guang-ya. Self-assembly Mechanism and Biological Applications of Smart Peptides. China Biotechnology, 2014, 34(5): 87-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140512        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/87


[1] Rodriguez-Hernandez J, Chécot F, Gnanou Y, et al. Toward 'smart'nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci, 2005, 30(7): 691-724.

[2] Stephanopoulos N, Ortony J H, Stup S I. Self-assembly for the synthesis of functional biomaterials. Acta Mater, 2013, 61(3): 912-930.

[3] Aida T, Meijer E W, Stupp S I. Functional supramolecular polymers. Science, 2012, 335(6070): 813-817.

[4] 许小丁, 陈昌盛, 陈荆晓, 等. 多肽分子自组装. 中国科学:化学. 2011(02): 221-238. Xu X D, Cheng C S, Chen J X, et al. Molecular self-assembly of peptide. Scientia Sinica Chimica, 2011(02): 221-238.

[5] Zhao X, Zhang S. Designer self-assembling peptide materials. Macromol Biosci, 2007, 7(1): 13-22.

[6] Bokhari M A, Akay G, Zhang S, et al. The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. Biomaterials, 2005, 26(25): 5198-5208.

[7] Zhao X, Pan F, Lu J R. Recent development of peptide self-assembly. Prog Nat Sci, 2008, 18(6): 653-660.

[8] Lu J R, Perumal S, Powers E T, et al. Adsorption of beta-hairpin peptides on the surface of water: a neutron reflection study. J Am Chem Soc, 2003, 125(13): 3751-3757.

[9] Zhang S, Yan L, Altman M, et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials, 1999, 20(13): 1213-1220.

[10] Reches M, Porat Y, Gazit E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem, 2002, 277(38): 35475-35480.

[11] Hong Y, Pritzker M D, Legge R L, et al. Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II. Colloids Surf B Biointerfaces, 2005, 46(3): 152-161.

[12] Cao M, Cao C, Zhang L, et al. Tuning of peptide assembly through force balance adjustment. J Colloid Interface Sci, 2013, 407: 287-295.

[13] Dreher M R, Simnick A J, Fischer K, et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J Am Chem Soc, 2008, 130(2): 687-694.

[14] Osborne J L, Farmer R, Woodhouse K A. Self-assembled elastin-like polypeptide particles. Acta Biomaterialia, 2008, 4(1): 49-57.

[15] Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619): 625-627.

[16] Nam K T, Shelby S A, Choi P H, et al. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater, 2010, 9(5): 454-460.

[17] Reches M, Gazit E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett, 2004, 4(4): 581-585.

[18] Chung W J, Oh J W, Kwak K, et al. Biomimetic self-templating supramolecular structures. Nature, 2011, 478(7369): 364-368.

[19] Lee J H, Lee J H, Lee Y J, et al. Protein/peptide based nanomaterials for energy application. Curr Opin Biotechnol, 2013, 24(4): 599-605.

[20] Chen X, Gerasopoulos K, Guo J, et al. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano, 2010, 4(9): 5366-5372.

[21] Beker P, Rosenman G. Bioinspired nanostructural peptide materials for supercapacitor electrodes. J Mater Res, 2010, 25(08): 1661-1666.

[22] de la Rica R, Matsui H. Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev, 2010, 39(9): 3499-3509.

[23] Korendovych I V, Senes A, Kim Y H, et al. De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. J Am Chem Soc, 2010, 132(44): 15516-15518.

[24] Springer J W, Parkes-Loach P S, Reddy K R, et al. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting. J Am Chem Soc, 2012, 134(10): 4589-4599.

[25] Kim J H, Lee M, Lee J S, et al. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew Chem Int Ed Engl, 2012, 51(2): 517-520.

[26] Holmes T C, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A, 2000, 97(12): 6728-6733.

[27] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684-1688.

[28] Whaley S R, English D S, Hu E L, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000, 405(6787): 665-668.

[29] Kopito R R, Ron D. Conformational disease. Nat Cell Biol, 2000, 2(11): E207-E209.

[30] Russell R J, Fergusom J M, Hough D W, et al. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 resolution. Biochemistry-Us, 1997, 36(33): 9983-9994.

[31] Liu Y, Ye H, Satkunendrarajah K, et al. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater, 2013, 9(9): 8075-8088.

[32] Rochet J C, Lansbury P J. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol, 2000, 10(1): 60-68.

[33] Herrero-Vanrell R, Rincon A C, Alonso M, et al. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release, 2005, 102(1): 113-122.

[34] Bidwell G R, Davis A N, Fokt I, et al. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest New Drugs, 2007, 25(4): 313-326.

[35] Betre H. Controlled Intra-articular Drug Delivery System Based on Thermally Responsive Biopolymers. Duke University, 2005.

[36] Keller K, Friedmann T, Boxman A. The bioseparation needs for tomorrow. Trends Biotechnol, 2001, 19(11): 438-441.

[37] Meyer D E, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol, 1999, 17(11): 1112-1115.

[38] Chilkoti A, Christensen T, MacKay J A. Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr Opin Chem Biol, 2006, 10(6): 652-657.

[39] 付晓平, 王文研, 张光亚. 以类弹性蛋白多肽为标签的表达质粒构建及其用于木聚糖酶的非色谱纯化. 微生物学报, 2012, 52(1): 90-95. Fu X P, Wang W W, Zhang G Y. Construction of an expression vector with elastin-like polypeptide tag to purify xylanase. Acta Microbiologic Sinica, 2012, 52(1): 90-95.

[40] Yu S, Liu Y. Expression and one-step purification of a β-galactosidase by fusion with elastin-like polypetides. Process Biochem, 2012, 47(7): 1108-1114.

[41] 胡凡, 柯涛, 李鑫, 等. 类弹性蛋白ELPs融合表达在抗菌肽分离纯化中的应用. 分子细胞生物学报, 2008, 41(3): 233-237. Hu F, Ke T, Li X, et al. Expression and purification of the antimicrobial polypeptide by fusion with elastin-like polypeptide. Journal of Molecular Cell Biology, 2008, 41(3): 233-237.

[42] Floss D M, Schallau K, Rose-John S, et al. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol, 2010, 28(1): 37-45.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[3] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[4] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.
[5] 董茂盛, 王佃亮. 生物支架材料——组织工程连载之二[J]. 中国生物工程杂志, 2014, 34(06): 122-127.
[6] 王德平. “十一五”863计划“纳米生物材料研发”重点项目课题布局及实施情况分析[J]. 中国生物工程杂志, 2012, 32(10): 135-138.
[7] 夏嵩, 张成武. 硅藻纳米技术[J]. 中国生物工程杂志, 2011, 31(5): 126-130.
[8] 夏嵩 张成武. 硅藻纳米技术研究概况[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[9] 李晓强,莫秀梅,范存义. 神经导管研究与进展[J]. 中国生物工程杂志, 2007, 27(7): 112-116.
[10] 张然, 徐慰倬, 孔平, 许红韬, 李宁. 转基因动物应用的研究现状与发展前景[J]. 中国生物工程杂志, 2005, 25(8): 16-24.
[11] 王馨, 屈雷, 窦忠英, 杨学义. 组织工程生物支架材料[J]. 中国生物工程杂志, 2003, 23(10): 15-18.
[12] 姜忠义, 王艳强. 纳米生物技术[J]. 中国生物工程杂志, 2002, 22(6): 75-78.
[13] 陈国强, 赵锴. 生物工程与生物材料[J]. 中国生物工程杂志, 2002, 22(5): 1-8.
[14] 王佃亮, 肖成祖. 动物细胞高密度培养用多孔微球[J]. 中国生物工程杂志, 1998, 18(2): 46-49.
[15] 杨文治, 宫亚涛, 张建平. 低温技术与生物工程[J]. 中国生物工程杂志, 1990, 10(6): 46-50,61.