Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (01): 98-103    
综述     
微生物酶分子改造研究进展
郜赵伟1,2,张宇宏1,张伟1
1.中国农业科学院生物技术研究所 北京 100081
2.西南大学生命科学学院 重庆 400715
Advances in Molecular Modification of Microbial Enzymes
GAO Zhao-wei1,2,ZHANG Yu-hong1,ZHANG Wei1
1.Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,China
2.School of Life Science, Southwest University, Chongqing 400715, China
 全文: PDF(396 KB)   HTML
摘要:

近年来,越来越多的酶蛋白已经采用重组微生物反应器进行高效生产。为了改善酶蛋白的催化性能,提高其环境适应性,同时提高酶蛋白的表达量,降低生产成本,各种针对酶蛋白分子改造的基因工程技术已经得到大量的应用。综述了用于酶分子改造和进化的主要分子生物学方法,如定点突变、易错PCR、基因改组、密码子优化等技术及其应用成就。

关键词: 酶制剂分子改造定向进化基因工程    
Abstract:

In recent years, more and more of the enzyme proteins have been carried out using recombinant microorganism bioreactor for large scale production. For reasons of improved the catalytic capability and environmental suitability, or enhanced expression level of the protein, a variety of genetic engineering technology according to protein molecule modification have been applied extensively.Major strategies and achievements of molecular modification for microbial enzyme, such as site-directed mutagenesis, error-prone PCR, DNA shuffling and optimum codon design were reviewed.

Key words: Enzyme    Molecular modification    Directed evolution    Gene engineering
收稿日期: 2009-10-29 出版日期: 2010-01-27
通讯作者: 张伟     E-mail: zwcaas@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郜赵伟
张宇宏
张伟

引用本文:

郜赵伟 张宇宏 张伟. 微生物酶分子改造研究进展[J]. 中国生物工程杂志, 2010, 30(01): 98-103.

GAO Diao-Wei, ZHANG Yu-Hong, ZHANG Wei. Advances in Molecular Modification of Microbial Enzymes. China Biotechnology, 2010, 30(01): 98-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I01/98

[1] Korkegian A, Black M E, Baker D, et al. Computational thermostabilization of an enzyme.Science, 2005, 308(5723): 857860. 
[2] Jeong M Y, Kim S, Yun C W, et al. Engineering a denovo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J Biotechnol, 2007, 127(2): 300309. 
[3] Mahadevan S A, Wi S G, Lee D S, et al. Sitedirected mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett,2008, 287(2): 205211. 
[4] Kang H J, Uegaki K, Fukada H, et al. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles, 2007, 11(2): 251256. 
[5] HeckmannPohl D M, Bastian S, Altmeier S, et al. Improvement of the fungal enzyme pyranose 2oxidase using protein engineering. J Biotechnol, 2006, 124(1): 2640. 
[6] Kim M S, Lei X G.Enhancing thermostability of Escherichia coli phytase AppA2 by errorprone PCR. Appl Microbiol Biotechnol, 2008, 79(1): 6975. 
[7] Coco W M, Levinson W E, Crist M J, et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 2001,19(4): 354359. 
[8] Cho C M, Mulchandani A, Chen W, et al. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol, 2004, 70(8): 46814685. 
[9] Yuan L, Kurek I, English J, et al. Laboratorydirected protein evolution. Microbiol Mol Biol Rev, 2005, 69(3): 373392. 
[10] Shi C, Lu X, Ma C, et al. Enhancing the thermostability of a novel betaagarase AgaB through directed evolution. Appl Biochem Biotechnol, 2008, 151(1): 5159. 
[11] Nakazawa H, Okada K, Onodera T, et al. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol, 2009, 83(4): 649657. 
[12] Miyazaki K, Takenouchi M, Kondo H,et al. Thermal stabilization of Bacillus subtilis family11 xylanase by directed evolution. J Biol Chem, 2006, 281(15): 1023610242. 
[13] Wang Y, Yuan H, Wang J, et al. Truncation of the cellulose binding domain improved thermal stability of endobeta1,4glucanase from Bacillus subtilis JA18. Bioresour Technol, 2009,100(1): 345349. 
[14] Lin H Y, Chuang H H, Lin F P, et al. Biochemical characterization of engineered amylopullulanase from Thermoanaerobacter ethanolicus 39Eimplicating the nonnecessity of its 100 Cterminal amino acid residues. Extremophiles, 2008 12(5): 641650. 
[15] Joucla G, Pizzut S, Monsan P, et al. Construction of a fully active truncated alternansucrase partially deleted of its carboxyterminal domain. FEBS Lett, 2006, 580(3): 763768. 
[16] Wen T N, Chen J L, Lee S H, et al. A truncated Fibrobacter succinogenes 1,31,4betadglucanase with improved enzymatic activity and thermotolerance. Biochemistry. 2005, 44(25): 91979205. 
[17] Hai T, Lee J S, Kim T J, et al. The role of the Cterminal region of cyanophycin synthetase from Nostoc ellipsosporum NE1 in its enzymatic activity and thermostability: a key function of Glu(856). Biochim Biophys Acta, 2009, 1794(1): 4249. 
[18] Sun J Y, Liu M Q, Xu Y L, et al. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by Nterminus replacement. Protein Expr Purif, 2005, 42(1): 122130. 
[19] Hong S Y, Lee J S, Cho K M, et al. Construction of the bifunctional enzyme cellulasebetaglucosidase from the hyperthermophilic bacterium Thermotoga maritima.Biotechnol Lett, 2007, 29(6): 931936. 
[20] Lu P, Feng M G. Bifunctional enhancement of a betaglucanasexylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol, 2008, 79(4): 579587. 
[21] Xue F, Gu Z, Feng JA, et al. LINKER: a web server to generate peptide sequences with extended conformation. Nucleic Acids Res, 2004, 32: 562565. 
[22] Puigbo P, Guzman E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res, 2007, 35: 126131. 
[23] Teng D, Fan Y, Yang Y L, et al, Codon optimization of Bacillus licheniformis beta1,31,4glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol, 2007, 74(5): 10741083. 
[24] Chang S W, Lee G C, Shaw J F, et al. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J Agric Food Chem, 2006, 54(3): 815822. 
[25] Mechold U, Gilbert C, Ogryzko V, et al. Codon optimization of the BirA enzyme gene leads to higher expression and an improved efficiency of biotinylation of target proteins in mammalian cells. J Biotechnol, 2005, 116(3): 245249. 
[26] Wu X, Jornvall H, Berndt K D, et al. Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem Biophys Res Commun, 2004, 313(1): 8996. 
[27] Sreekrishna K, Barr K A, Hoard S A, et a1. Expression of human serum albumin in Pichia pastoris. Yeast, 1990, 6:447. 
[28] Huang H Q, Yang P L, Luo H Y, et al. Highlevel expression of a truncated 1,31,4betaDglucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation.Appl Microbiol Biotechnol, 2008,78(1): 95103. 
[29] Hofacker I L. Vienna RNA secondary structure sever. Nucleic Acids Research, 2003, 31 (13) : 34293433. 
[30] Ding Y, Chan C Y, Lawrence C E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Research, 2004, 32: 135141. 
[31] Touzet H, Perriquet O. CARNAC: folding families of noncoding RNAs.Nucleic Acids Research, 2004, 32: 142145. 
[32] Perriquet O, Touzet H, Dauchet M. Finding the common structure shared by two homologous RNAs. Bioinformatics, 2003, 19(1): 108116. 
[33] Siebert S, Backofen R. MARNA:multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons.Bioinformatics, 2005, 21 (16): 33523359. 
[34] Knudsen B, Hein J. Pfold: RNA secondary structure prediction using stochastic context free grammars. Nucleic Acids Research, 2003, 31(13): 34233428.
[35] Mathews D H, Turner D H. Dynalign: Analgorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology, 2002, 317(2): 191203. 
[36] Romanos M A, Scorer C A, Clare J J. Foreign gene expression in yeast: a review. Yeast, 1992, 8: 423488. 
[37] Burland T G. DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol, 2000, 132: 7191. 
[38] Xiong A, Yao Q, Peng R, et al. High level expression of a synthetic gene encoding Peniop horalycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol,2006, 72: 10391047. 
[39] Hohenblum H, Gasser B, Maurer M, et a1. Effects of gene dosage,promoters,and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng, 2004, 85: 367375. 
[40] Damasceno LM, Anderson K A, Ritter G, et a1. Cooverexpression of chaperones for enhanced secretion of a singlechain antibody fragement in Pichia pastoris. Appl Genet Mol Biotechnol,2007, 74: 381389. 
[41] Jung S, Park S. Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnol Lett, 2008, 30(4): 717722.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[3] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[4] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[5] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[6] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[7] 王兆官,吴洋,齐浩. 人工合成多样性突变文库研究进展*[J]. 中国生物工程杂志, 2019, 39(11): 113-122.
[8] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[9] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[10] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[11] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[12] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[13] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[14] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[15] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.