Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (11): 78-91    DOI: 10.13523/j.cb.2307007
    
Research Progress of the Promoter Engineering in Saccharomyces cerevisiae
JIANG Hui-hui1,2,WANG Qiang2,RAO Zhi-ming2,ZHANG Xian2,**()
1 School of Biological and Environmental Engineering, Chaohu University, Hefei 238024, China
2 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(1313KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Promoter is the most important element of initiation gene transcription and its function is closely related to the gene expression level. The promoter engineering aims to study the functional modification and directed evolution of promoters, which can expand and deepen the application of Saccharomyces cerevisiae promoters in synthetic biology. Based on the structural characteristics of S. cerevisiae promoters, this review focuses on the strategies and applications of S. cerevisiae promoter engineering, including regulatory sequence knockout, random mutation of traditional promoters, saturated mutation, promoter hybridization, synthesis of minimum promoter skeleton, and modification of transcription factor binding sites. In addition, the latest progress of CRISPR/dCas9 and artificial intelligence tools in the field of S. cerevisiae promoter engineering is introduced. The future development prospects of promoter engineering in the field of synthetic biology are also discussed.



Key wordsSaccharomyces cerevisiae      Transcriptional regulation      Promoter modification      CRISPR/dCas9      Artificial intelligence     
Received: 06 July 2023      Published: 01 December 2023
ZTFLH:  Q815  
Corresponding Authors: **Xian ZHANG     E-mail: zx@jiangnan.edu.cn
Cite this article:

JIANG Hui-hui, WANG Qiang, RAO Zhi-ming, ZHANG Xian. Research Progress of the Promoter Engineering in Saccharomyces cerevisiae. China Biotechnology, 2023, 43(11): 78-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2307007     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I11/78

Fig.1 Structure of initiating transcription elements in S. cerevisiae
启动子 启动子来源 英文全称 参考文献
组成型启动子
pPGK1 磷酸甘油酸激酶 Phosphoglycerate kinase [9,12-13]
pTEF1 转录延伸因子 Transcriptional elongation factor [10, 14, 15,16,17]
pCCW14 细胞壁甘露糖蛋白 Cell wall glycoprotein [18]
pHXT7 己糖转运蛋白 Hexose transporter [19]
pTPI 磷酸丙糖异构酶 Triose phosphate isomerase [19]
pFBA1 果糖-二磷酸醛缩酶 Fructose-bisphosphate aldolase [20]
pADH1 乙醇脱氢酶 Alcohol dehydrogenase [14]
pENO2 烯醇化酶II Gamma-enolase [21]
pPDC2 丙酮酸脱羧酶 Pyruvate decarboxylase [21]
pPFY1 细胞骨架组织蛋白脯氨酸 Cytoskeletal tissue protein proline [22]
pCYC1 细胞色素c Cytochrome c [23]
pTDH3 甘油醛-3-磷酸脱氢酶 Glyceraldehyde-3-phosphate dehydrogenase [24-25]
pExp1 跨膜输出蛋白 Expansin [26]
诱导型启动子
pGAL1 半乳糖激酶 Galactokinase [23, 27-28]
pGAL7 半乳糖转移酶 Hexose-1-phosphate uridylyltransferase [28]
pGAL10 半乳糖差向异构酶 Bifunctional UDP-glucose 4-epimerase/aldose 1-epimerase [29]
pGPD 3-磷酸甘油脱氢酶 Glycerol 3-phospahte dehydrogenase [23, 26, 30]
pCUP1 金属硫蛋白 Metallothionein [31]
pDAN1 DNA/RNA结合蛋白 Alba DNA/RNA-binding protein [24]
pPHO5 酸性磷酸酶 Acid phosphatase [32]
Table 1 Promoters of Saccharomyces cerevisiae commonly used in synthetic biology
Fig.2 The structure of the pGAL promoter and schematic diagram of transcriptional regulation ①Transcriptional activation: The transcriptional activator Gal4p binds to the upstream activator sequence of the pGAL promoter; ②Transcriptional repression: The negative regulator Gal80p directly binds to Gal4p and inhibits Gal4p function under non-galactose conditions; ③In the presence of galactose, the inhibitory effect of Gal80p on Gal4p is relieved by Gal3p[33]
Fig.3 Research of the promoter engineering in S. cerevisiae
应用分类 启动子 应用实例 参考文献
起始蛋白质表达 pHXT7 在重组酿酒酵母中起始戊二烯合成酶基因CnVS过表达,提高瓦伦烯产量 [19]
pPGK 组成性启动子pPGK驱动艾利希途径(Ehrlich pathway)中关键酶基因ARO8ARO10ADH2表达,提高2-苯乙醇产量 [12]
pGAL1 起始SARS-CoV-2刺突蛋白的全长受体结合域(RBD)表达,制备出基于S.cerevisiae的SARS-CoV-2疫苗 [27]
调控细胞代谢水平 pGAL 构建pGAL启动子的负/正转录调控回路,使用四环素触发对pGAL的抑制,升高温度触发pGAL的去抑制,并应用于酵母中异源倍半萜烯生产 [29]
开发与优化生物传感器 pPGK1 筛选出对葡萄糖二酸响应最显著的启动子pYCR012W(pPGK1),并通过截短改造确定相应的转录因子,用于构建酿酒酵母葡萄糖二酸生物传感器 [13]
pCCW14 通过修改启动子上游激活序列中的转录因子结合位点,实现启动子pCCW14对低pH的响应 [18]
增强宿主细胞对环境的耐受性 pFBA1 从嗜热栖热菌和酿酒酵母中挖掘出13种潜在的抗氧化耐热功能基因,分别与酿酒酵母强组成型启动子pFBA1重组,构建出基于抗氧化防御系统的耐热性酿酒酵母 [20]
pCYR1 通过改变腺苷酸环化酶编码基因CYR1启动子的长度,实现微调控CYR1基因的表达水平,使酿酒酵母细胞具有良好耐热和耐乙醇性能 [34]
Table 2 Applications of Saccharomyces cerevisiae promoter in the field of synthetic biology
方法 改造策略 优点 缺点 参考文献
调控序列敲除 利用同源重组或其他手段使启动子特定的调控序列失活或缺失 技术成熟,改造针对性强 需要对目标功能序列了解清楚,仅适用于诱导型启动子 [38-39]
传统启动子随机突变 通过易错PCR等随机改变传统启动子区的个别碱基 技术成熟,可批量处理,改造后启动子活性范围广 实验结果不可预测,突变后筛选工作量很大 [15,21,40-41]
饱和突变 利用简并引物针对启动子间隔区序列进行改造 可以半理性的对启动子非保守区进行定向设计改造 需要对目标启动子序列的保守区和间隔区进行区分,筛选工作量较大 [22, 31]
启动子杂交 将核心启动子序列与新增强子元件组合,调节并增强启动子活性 可根据需要选择增强子,以单个序列或多个序列串联的方式重组,改造后转录活性可控 需要建立杂交启动子库,实验工作量大,难以实现高通量筛选 [16,23-24,42-47]
合成最小化启动子骨架 敲除或替换内源启动子中非必需碱基 具有最小功能单位的启动子骨架,可以满足大规模合成生物学需要 对研究人员专业要求较高,实验前的序列分析工作量大 [17,26,32,48]
转录因子结合位点的修饰和改造 新增外源转录因子结合位点,或对原有结合位点进行突变或替换 可以结合转录因子的定制和修饰,来定向改变天然启动子功能和表达水平。 真核转录因子参与调控的过程复杂,难以实现动态精确调控 [18,31,46]
Table 3 Comparison of methods for promoter modification and directed evolution
Fig.4 Schematic diagram of regulation by CRISPR/dCas9 A. Artificially synthesized of gRNA B. Fusion of dCas9 with specific transcription factors C. Complex formation with dCas9 and gRNA D. The dCas9 protein guides the complex to the vicinity of the PAM site, gRNA is precisely located by base complementarity, and transcription factors participate in transcriptional regulation
Fig.5 Schematic diagram of machine learning for the engineering of promoters in S.cerevisiae A. Model selection B. Feature extraction C. Database building and trainin D. Prediction and validation E. Rational design of artificial promoters
[1]   Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews: MMBR, 2008, 72(3): 379-412.
doi: 10.1128/MMBR.00025-07
[2]   Hill M S, Vande Zande P, Wittkopp P J. Molecular and evolutionary processes generating variation in gene expression. Nature Reviews Genetics, 2021, 22(4): 203-215.
doi: 10.1038/s41576-020-00304-w pmid: 33268840
[3]   Feng X F, Marchisio M A. Saccharomyces cerevisiae promoter engineering before and during the synthetic biology era. Biology, 2021, 10(6): 504.
doi: 10.3390/biology10060504
[4]   于慧敏, 郑煜堃, 杜岩, 等. 合成生物学研究中的微生物启动子工程策略. 合成生物学, 2021(4): 598-611.
doi: 10.12211/2096-8280.2020-092
[4]   Yu H M, Zheng Y K, Du Y, et al. Microbial promoter engineering strategies in synthetic biology. Synthetic Biology Journal, 2021(4): 598-611.
doi: 10.12211/2096-8280.2020-092
[5]   Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678-12683.
[6]   Tang H T, Wu Y L, Deng J L, et al. Promoter architecture and promoter engineering in Saccharomyces cerevisiae. Metabolites, 2020, 10(8): 320.
doi: 10.3390/metabo10080320
[7]   Lubliner S, Regev I, Lotan-Pompan M, et al. Core promoter sequence in yeast is a major determinant of expression level. Genome Research, 2015, 25(7): 1008-1017.
doi: 10.1101/gr.188193.114 pmid: 25969468
[8]   Stewart A J, Hannenhalli S, Plotkin J B. Why transcription factor binding sites are ten nucleotides long. Genetics, 2012, 192(3): 973-985.
doi: 10.1534/genetics.112.143370 pmid: 22887818
[9]   Cui D Y, Zhang Y, Xu J, et al. PGK1 promoter library for the regulation of acetate ester production in Saccharomyces cerevisiae during Chinese Baijiu fermentation. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7417-7427.
doi: 10.1021/acs.jafc.8b02114
[10]   缪晡, 苟敏, 陈栋, 等. 不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价. 应用与环境生物学报, 2019, 25(5): 1185-1191.
[10]   Miao B, Gou M, Chen D, et al. Evaluation of constitutive promoter and inducible promoter of Saccharomyces cerevisiae under different sugar fermentation conditions. Chinese Journal of Applied and Environmental Biology, 2019, 25(5): 1185-1191.
[11]   Kim S, Lee K, Bae S J, et al. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2015, 99(6): 2705-2714.
doi: 10.1007/s00253-014-6303-5
[12]   林路成, 徐志伟, 张建泽, 等. 原生质体融合结合基因编辑技术显著提高酿酒酵母2-苯乙醇产量. 食品与发酵工业, 2023, 49(5):18-24.
[12]   Lin L C, Xu Z W, Zhang J Z, et al. Protoplast fusion combined with gene editing technology significantly improves the ability of Saccharomyces cerevisiae to produce 2-phenylethanol. Food and Fermentation Industries, 2023, 49(5):18-24.
[13]   苏蕊芳.葡萄糖二酸合成关键酶MIOX4及葡萄糖二酸生物传感器的研究. 无锡: 江南大学, 2022.
[13]   Su R F.Study on MIOX4, a key enzyme in glucose diacid synthesis, and glucose diacid biosensor. Wuxi: Jiangnan University, 2022.
[14]   彭炳银, 陈晓, 沈煜, 等. 不同启动子控制下木酮糖激酶的差异表达及其对酿酒酵母木糖代谢的影响. 微生物学报, 2011, 51(7): 914-922.
[14]   Peng B Y, Chen X, Shen Y, et al. Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae. Acta Microbiologica Sinica, 2011, 51(7): 914-922.
[15]   Rich M S, Payen C, Rubin A F, et al. Comprehensive analysis of the SUL1 promoter of Saccharomyces cerevisiae. Genetics, 2016, 203(1): 191-202.
doi: 10.1534/genetics.116.188037
[16]   Wang J J, Zhai H T, Rexida R, et al. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18(8): foy098.
[17]   Jin L Y, Nawab S, Xia M L, et al. Context-dependency of synthetic minimal promoters in driving gene expression: a case study. Microbial Biotechnology, 2019, 12(6): 1476-1486.
doi: 10.1111/1751-7915.13489 pmid: 31578818
[18]   Rajkumar A S, Liu G D, Bergenholm D, et al. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44(17): e136.
doi: 10.1093/nar/gkw553
[19]   Chen H F, Zhu C Y, Zhu M Z, et al. High production of valencene in Saccharomyces cerevisiae through metabolic engineering. Microbial Cell Factories, 2019, 18(1): 195.
doi: 10.1186/s12934-019-1246-2
[20]   高丽嫚. 基于抗氧化防御系统提高酿酒酵母耐热性的研究. 北京: 北京理工大学, 2016.
[20]   Gao L M. Study on improving the heat resistance of Saccharomyces cerevisiae based on antioxidant defense system. Beijing: Beijing Institute of Technology, 2016.
[21]   Yuan Y B, Zhao H M. Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain. Biotechnology and Bioengineering, 2013, 110(11): 2874-2881.
doi: 10.1002/bit.v110.11
[22]   Blount B A, Weenink T, Vasylechko S, et al. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One, 2012, 7(3): e33279.
doi: 10.1371/journal.pone.0033279
[23]   Blazeck J, Alper H S. Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnology Journal, 2013, 8(1): 46-58.
doi: 10.1002/biot.201200120 pmid: 22890821
[24]   Li S Y, Ma L Z, Fu W X, et al. Programmable synthetic upstream activating sequence library for fine-tuning gene expression levels in Saccharomyces cerevisiae. ACS Synthetic Biology, 2022, 11(3): 1228-1239.
doi: 10.1021/acssynbio.1c00511
[25]   Kotopka B J, Smolke C D. Model-driven generation of artificial yeast promoters. Nature Communications, 2020, 11: 2113.
doi: 10.1038/s41467-020-15977-4 pmid: 32355169
[26]   Liu R, Liu L Q, Li X, et al. Engineering yeast artificial core promoter with designated base motifs. Microb Cell Fact, 2020, 19(1):38.
doi: 10.1186/s12934-020-01305-4 pmid: 32070349
[27]   Gao T, Ren Y, Li S Q, et al. Immune response induced by oral administration with a Saccharomyces cerevisiae-based SARS-CoV-2 vaccine in mice. Microbial Cell Factories, 2021, 20(1): 95.
doi: 10.1186/s12934-021-01584-5
[28]   Peng B Y, Bandari N C, Lu Z Y, et al. Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Communications Biology, 2022, 5(1): 1-13.
doi: 10.1038/s42003-021-02997-z
[29]   Kim M J, Sung B H, Park H J, et al. A new platform host for strong expression under GAL promoters without inducer in Saccharomyces cerevisiae. Biotechnology Reports, 2022, 36: e00763.
doi: 10.1016/j.btre.2022.e00763
[30]   王俊杰.酿酒酵母甘油合成关键酶基因GPD1及其启动子在烟草中的表达研究. 无锡: 江南大学, 2008.
[30]   Wang J J.Study on expression of key enzyme gene GPD1 and its promoter in Saccharomyces cerevisiae glycerol synthesis in tobacco. Wuxi: Jiangnan University, 2008.
[31]   Jeppsson M, Johansson B, Jensen P R, et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast, 2003, 20(15): 1263-1272.
pmid: 14618564
[32]   Decoene T, De Maeseneire S L, De Mey M. Modulating transcription through development of semi-synthetic yeast core promoters. PLoS One, 2019, 14(11): e0224476.
doi: 10.1371/journal.pone.0224476
[33]   Lohr D, Venkov P, Zlatanova J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. The FASEB Journal, 1995, 9(9): 777-787.
doi: 10.1096/fsb2.v9.9
[34]   侯晓月.CYR1基因启动子改造对酿酒酵母耐受性的影响研究. 天津: 天津科技大学, 2016.
[34]   Hou X Y. Effect of CYR1 gene promoter transformation on tolerance of Saccharomyces cerevisiae. Tianjin: Tianjin University of Science & Technology, 2016.
[35]   Hubmann G, Thevelein J M, Nevoigt E. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.Yeast Metabolic Engineering. New York: Humana Press, 2014: 17-42.
[36]   蒋慧慧, 李丰功, 陆毅, 等. 三种酵母启动子在毕赤酵母中的功能比较. 中国生物工程杂志, 2011, 31(5): 60-68.
[36]   Jiang H H, Li F G, Lu Y, et al. Functional analysis of three promoters from yeast in Pichia pastoris. China Biotechnology, 2011, 31(5): 60-68.
[37]   Keren L, Zackay O, Lotan-Pompan M, et al. Promoters maintain their relative activity levels under different growth conditions. Molecular Systems Biology, 2013, 9: 701.
doi: 10.1038/msb.2013.59 pmid: 24169404
[38]   韩锦雄.研究CRISPR/Cas9系统在体外和体内定点敲除大片段DNA. 南京: 南京大学, 2016.
[38]   Han J X.To study the site-directed knockout of large fragments of DNA by CRISPR/Cas9 system in vitro and in vivo. Nanjing: Nanjing University, 2016.
[39]   Kang H A, Kang W K, Go S M, et al. Characteristics of Saccharomyces cerevisiae gal1Δ and gal1Δhxk2Δ mutants expressing recombinant proteins from the GAL promoter. Biotechnology and Bioengineering, 2005, 89(6): 619-629.
doi: 10.1002/bit.v89:6
[40]   张旭, 王晶晶, 刘建平. 基于启动子和宿主改造的酿酒酵母表达系统优化研究. 中国生物工程杂志, 2015, 35(1): 61-66.
[40]   Zhang X, Wang J J, Liu J P. The optimization of Saccharomyces cerevisiae expression system by mutagenesis of promoter and host strain. China Biotechnology, 2015, 35(1): 61-66.
[41]   Nevoigt E, Kohnke J, Fischer C R, et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2006, 72(8): 5266-5273.
doi: 10.1128/AEM.00530-06 pmid: 16885275
[42]   Hong S J, Kim H J, Kim J W, et al. Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase. Bioprocess and Biosystems Engineering, 2015, 38(2): 263-272.
doi: 10.1007/s00449-014-1265-7
[43]   Garí E, Piedrafita L, Aldea M, et al. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast, 1997, 13(9): 837-848.
pmid: 9234672
[44]   Wawiórka L, Molestak E, Szajwaj M, et al. Multiplication of ribosomal P-stalk proteins contributes to the fidelity of translation. Molecular and Cellular Biology, 2017, 37(17): e00060-17.
[45]   唐瑞琪, 熊亮, 白凤武, 等. 酿酒酵母人工杂合启动子与天然启动子活性比较. 生物技术通报, 2017, 33(1): 120-128.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.013
[45]   Tang R Q, Xiong L, Bai F W, et al. Activity comparison of the artificial hybrid promoter with its native promoter in Saccharomyces cerevisiae. Biotechnology Bulletin, 2017, 33(1):120-128.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.013
[46]   He S F, Zhang Z W, Lu W Y. Natural promoters and promoter engineering strategies for metabolic regulation in Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 2023, 50(1): kuac029.
[47]   Deaner M, Alper H S. Promoter and terminator discovery and engineering. Synthetic biology:metabolic engineering. Cham: Springer International Publishing, 2016: 21-44.
[48]   Yang S, Liu Q T, Zhang Y F, et al. Construction and characterization of broad-spectrum promoters for synthetic biology. ACS Synthetic Biology, 2018, 7(1): 287-291.
doi: 10.1021/acssynbio.7b00258 pmid: 29061047
[49]   章益蜻, 王宇娇, 汪辰雨, 等. 酿酒酵母细胞融合机制及交配信号通路的合成生物学应用. 生物化学与生物物理进展, 2023, 50(2): 241-251.
[49]   Zhang Y Q, Wang Y J, Wang C Y, et al. Mechanism of yeast mating signal pathway and its synthetic biology applications. Progress in Biochemistry and Biophysics, 2023, 50(2): 241-251.
[50]   Zhang F. Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52: e6.
doi: 10.1017/S0033583519000052
[51]   李宏彪, 梁晓琳, 周景文. 酿酒酵母基因编辑技术研究进展. 生物工程学报, 2021, 37(3): 950-965.
[51]   Li H B, Liang X L, Zhou J W. Progress in gene editing technologies for Saccharomyces cerevisiae. Chin J Biotech, 2021, 37(3): 950-965.
[52]   Rainha J, Rodrigues J L, Rodrigues L R. CRISPR-Cas9: a powerful tool to efficiently engineer Saccharomyces cerevisiae. Life, 2020, 11(1): 13.
doi: 10.3390/life11010013
[53]   陈永灿, 张建志, 司同. 酿酒酵母中基于CRISPR/dCas9的基因转录调控工具的开发与应用. 生物技术通报, 2020, 36(4): 1-12.
[53]   Chen Y C, Zhang J Z, Si T. Development and applications of CRISPR/dCas9-based gene transcriptional regulation tool in Saccharomyces cerevisiae. Biotechnology Bulletin, 2020, 36(4): 1-12.
[54]   Gilbert L, Horlbeck M, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3): 647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[55]   Gilbert L, Larson M, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442-451.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981
[56]   Farzadfard F, Perli S D, Lu T K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2013, 2(10): 604-613.
doi: 10.1021/sb400081r pmid: 23977949
[57]   Cámara E, Lenitz I, Nygård Y.A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Scientific Reports, 2020, 10(1): 1-13.
doi: 10.1038/s41598-019-56847-4
[58]   Deaner M, Alper H S. Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 40: 14-22.
doi: 10.1016/j.ymben.2017.01.012
[59]   Dong C, Jiang L H, Xu S J, et al. A single Cas9-VPR nuclease for simultaneous gene activation, repression, and editing in Saccharomyces cerevisiae. ACS Synthetic Biology, 2020, 9(9): 2252-2257.
doi: 10.1021/acssynbio.0c00218
[60]   Maurizio M, Ibai L, Verena S, et al. Identification of acetic acid sensitive strains through biosensor-based screening of a Saccharomyces cerevisiae CRISPRi library. Microbial Cell Factories, 2022, 21(1): 214.
doi: 10.1186/s12934-022-01938-7 pmid: 36243715
[61]   Wang Y, Wang H C, Wei L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Research, 2020, 48(12): 6403-6412.
doi: 10.1093/nar/gkaa325 pmid: 32424410
[62]   LaFleur T L, Hossain A, Salis H M. Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nature Communications, 2022, 13(1): 1-15.
doi: 10.1038/s41467-021-27699-2
[63]   Curran K A, Crook N C, Karim A S, et al. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nature Communications, 2014, 5(1): 1-8.
[64]   Zrimec J, Buric F, Kokina M, et al. Learning the regulatory code of gene expression. Frontiers in Molecular Biosciences, 2021, 8: 673363.
doi: 10.3389/fmolb.2021.673363
[65]   Zrimec J, Fu X Z, Muhammad A S, et al. Controlling gene expression with deep generative design of regulatory DNA. Nature Communications, 2022, 13(1): 1-17.
doi: 10.1038/s41467-021-27699-2
[66]   de Boer C G, Vaishnav E D, Sadeh R, et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nature Biotechnology, 2020, 38(1): 56-65.
doi: 10.1038/s41587-019-0315-8 pmid: 31792407
[67]   Vaishnav E D, de Boer C G, Molinet J, et al. The evolution, evolvability and engineering of gene regulatory DNA. Nature, 2022, 603(7901): 455-463.
doi: 10.1038/s41586-022-04506-6
[68]   Mitsui R, Yamada R, Ogino H. Improved stress tolerance of Saccharomyces cerevisiae by CRISPR-cas-mediated genome evolution. Applied Biochemistry and Biotechnology, 2019, 189(3): 810-821.
doi: 10.1007/s12010-019-03040-y
[1] XU Jian-ren, WANG Lan, MA Hai-jun. Research Progress of Sequence Analysis of Comparative Genomes in Saccharomyces cerevisiae for Bioethanol Production[J]. China Biotechnology, 2023, 43(9): 77-92.
[2] BAO Xin-ru, CHEN Mao-sen, ZHONG Jie, QI Feng. Characteristics and Application of CRISPR/Cas12a Genome Editing Technology[J]. China Biotechnology, 2023, 43(10): 32-42.
[3] Fang-fang TIAN,Bo HE,Yi WU. Advances in Large DNA Assembly and Transfer Based on Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(7): 101-112.
[4] CHEN Tao,LIU Zhi-hua,LI Xia,XIE Ze-xiong. Design and Construction of Inhibitor-tolerant Yeast Chassis Cells[J]. China Biotechnology, 2022, 42(1/2): 1-13.
[5] LI Ran,YAN Xiao-guang,LI Wei-guo,LIANG Dong-mei,CAI YIN Qing-ge-le,QIAO Jian-jun. Strategies of Engineering Saccharomyces cerevisiae for High-efficiency Synthesis of Sesquiterpenes[J]. China Biotechnology, 2022, 42(1/2): 14-25.
[6] ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(1/2): 26-36.
[7] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[8] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[9] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[10] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[11] PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress[J]. China Biotechnology, 2019, 39(9): 84-90.
[12] Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU. Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine[J]. China Biotechnology, 2019, 39(2): 101-111.
[13] Zhi-yong XIE,Xiang ZHOU. Machine Learning in Medical Imaging:the Applications in Drug Discovery and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 90-100.
[14] Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation[J]. China Biotechnology, 2018, 38(7): 94-101.
[15] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.