Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (10): 32-42    DOI: 10.13523/j.cb.2304020
    
Characteristics and Application of CRISPR/Cas12a Genome Editing Technology
BAO Xin-ru1,CHEN Mao-sen1,ZHONG Jie1,QI Feng1,2,**()
1 National and Local Joint Engineering Research Center for Industrial Microbial Fermentation Technology, College of Life Science, Fujian Normal University, Fuzhou 350117, China
2 Fujian Provincial Key Laboratory of Cell Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350108, China
Download: HTML   PDF(941KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The CRISPR/Cas system (clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) has been developed as a new technique widely used in gene editing in recent years. It is derived from the adaptive immune system of bacteria and archaea. At present, the CRISPR system has been extensively explored, among which Class II CRISPR/Cas9 is used as an effective gene editing tool in microorganisms, plants and animal cells. Compared to typical CRISPR/Cas9, CRISPR/Cas12a, which belongs to Class II technology, has also been investigated and developed and has been receiving increasing attention due to its unique advantages. This review aims to introduce the characteristics of CRISPR/Cas12a, its differences from CRISPR/Cas9 in the biological mechanisms, as well as its application in synthetic biology and medicine so as to provide reference for the further development and application of CRISPR/Cas12a gene editing technology.



Key wordsCRISPR/Cas12a      Genome editing      Transcriptional regulation     
Received: 10 April 2023      Published: 02 November 2023
ZTFLH:  Q78  
Cite this article:

BAO Xin-ru, CHEN Mao-sen, ZHONG Jie, QI Feng. Characteristics and Application of CRISPR/Cas12a Genome Editing Technology. China Biotechnology, 2023, 43(10): 32-42.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304020     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I10/32

Fig.1 The biological mechanisms and Cas domain organizations of CRISPR/Cas (a) CRISPR/Cas9 (b) CRISPR/Cas12a
项目 CRISPR/Cas9 CRISPR/Cas12a
Cas蛋白大小 1 000~1 600 aa 1 200~1 300 aa
crRNA长度 100~200 nt 42~44 nt
crRNA类型 双链 单链
原间隔序列邻近基序 3' -GGN(SpCas9) 5' -TTN(FnCas12a)
核酸内切酶结构域 RuvC和HNH RuvC和Nuc
加工pre-crRNA RNase Ⅲ Cas12a
切口类型 平末端 黏性末端
多基因编辑效率
Table 1 The difference between CRISPR/Cas9 and CRISPR/Cas12a
Fig.2 A model for CRISPR/Cas12a-mediated transcriptional regulation
目的 工具 Cas12a蛋白来源 应用 参考文献
转录调控 dAsCas12a-SoxS(CRISPRi和CRISPRa) Acidaminococcus sp. Paenibacillus polymyx [24]
dEeCas12a(CRISPRi) Eubacterium eligens Escherichia coli MG1655
Escherichia coli DH5α
[36]
[36]
dFn Cas12a(CRISPRi) Francisella novicida Solventogenic Clostridium [49]
dFnCas12a(CRISPRi和CRISPRa) Francisella novicida Bacillus amyloliquefaciens [50]
LbCas12a-Mxi1 (CRISPRi)
LbCas12a-VPR(CRISPRa)
Lachnospiraceae sp.
Lachnospiraceae sp.
Yarrowia lipolytica
Yarrowia lipolytica
[35]
[35]
AsCas12a-VPR(CRISPRa) Acidaminococcus sp. 小鼠细胞 [51]
基因重组 FnCas12a-λ-Red Francisella novicida Escherichia coli MG1655
Halomonas bluephagenesis
[39]
[39]
FnCas12a-ssDNA Francisella novicida Escherichia coli MG1655
Yersinia pestis KIM6+
Mycobacterium smegmatis mc2155
[40]
[40]
[40]
SEVA-Cpf1 Francisella novicida Cyanobacteria [52]
AsCas12a-REDIT Acidaminococcus sp. 人类细胞 [41]
AsCas12a-MITI Acidaminococcus sp. 人类细胞 [42]
AsCas12a-Plus突变体
LbCas12a-Plus突变体
Acidaminococcus sp.
Lachnospiraceae sp.
哺乳动物细胞
哺乳动物细胞
[53]
[53]
碱基编辑 FnCas12a-ODM Francisella novicida Corynebacterium glutamicu [54]
bsdFnCas12a-BE Francisella novicida Escherichia coli DH5a [55]
dLbCas12a-BE0 Lachnospiraceae sp. 人类细胞 [45]
dLbCas12a突变体-CEBs/ABEs Lachnospiraceae sp. 哺乳动物细胞 [46]
dLbCas12a-BEACON Lachnospiraceae sp. 哺乳动物细胞 [44]
Table 2 CRISPR/Cas12a genome editing tool
[1]   Maeder M L, Gersbach C A. Genome-editing technologies for gene and cell therapy. Molecular Therapy, 2016, 24(3): 430-446.
doi: 10.1038/mt.2016.10 pmid: 26755333
[2]   Porteus M H, Carroll D. Gene targeting using zinc finger nucleases. Nature Biotechnology, 2005, 23(8): 967-973.
doi: 10.1038/nbt1125 pmid: 16082368
[3]   Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 2013, 14(1): 49-55.
doi: 10.1038/nrm3486 pmid: 23169466
[4]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[5]   Ma Y W, Zhang L F, Huang X X. Genome modification by CRISPR/Cas9. The FEBS Journal, 2014, 281(23): 5186-5193.
doi: 10.1111/febs.2014.281.issue-23
[6]   Tian P F, Wang J, Shen X L, et al. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synthetic and Systems Biotechnology, 2017, 2(3): 219-225.
doi: 10.1016/j.synbio.2017.08.006 pmid: 29318202
[7]   Xia A L, He Q F, Wang J C, et al. Applications and advances of CRISPR-Cas 9 in cancer immunotherapy. Journal of Medical Genetics, 2019, 56(1): 4-9.
doi: 10.1136/jmedgenet-2018-105422
[8]   Liu X, Wu S R, Xu J, et al. Application of CRISPR/Cas 9 in plant biology. Acta Pharmaceutica Sinica B, 2017, 7(3): 292-302.
doi: 10.1016/j.apsb.2017.01.002
[9]   Paul B, Montoya G. CRISPR-Cas12a: functional overview and applications. Biomedical Journal, 2020, 43(1): 8-17.
doi: S2319-4170(19)30505-0 pmid: 32200959
[10]   Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology, 2016, 14(2): 67-76.
doi: 10.1038/nrmicro.2015.14 pmid: 26751509
[11]   van der Oost J, Jore M M, Westra E R, et al. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 2009, 34(8): 401-407.
doi: 10.1016/j.tibs.2009.05.002 pmid: 19646880
[12]   van der Oost J, Westra E R, Jackson R N, et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews Microbiology, 2014, 12(7): 479-492.
doi: 10.1038/nrmicro3279 pmid: 24909109
[13]   Koonin E V, Makarova K S. Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B-Biological Sciences, 2019, 374(1772): 20180087.
doi: 10.1098/rstb.2018.0087
[14]   Makarova K S, Aravind L, Wolf Y I, et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 2011, 6: 38.
doi: 10.1186/1745-6150-6-38 pmid: 21756346
[15]   Makarova K S, Wolf Y I, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2): 67-83.
doi: 10.1038/s41579-019-0299-x pmid: 31857715
[16]   Makarova K S, Wolf Y I, Alkhnbashi O S, et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11): 722-736.
doi: 10.1038/nrmicro3569 pmid: 26411297
[17]   Tang Y Y, Fu Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell & Bioscience, 2018, 8: 59.
[18]   Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[19]   唐连超, 谷峰. CRISPR-Cas基因编辑系统升级: 聚焦Cas蛋白和PAM. 遗传, 2020, 42(3): 236-249.
doi: 10.16288/j.yczz.19-297 pmid: 32217510
[19]   Tang L C, Gu F. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM. Hereditas(Beijing), 2020, 42(3): 236-249.
doi: 10.16288/j.yczz.19-297 pmid: 32217510
[20]   Safari F, Zare K, Negahdaripour M, et al. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell & Bioscience, 2019, 9: 36.
[21]   Fagerlund R D, Staals R H J, Fineran P C. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology, 2015, 16: 251.
doi: 10.1186/s13059-015-0824-9 pmid: 26578176
[22]   Wang T M, Guan C G, Guo J H, et al. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nature Communications, 2018, 9(1): 2475.
doi: 10.1038/s41467-018-04899-x pmid: 29946130
[23]   Yan Q, Xu K, Xing J N, et al. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure. Scientific Reports, 2016, 6(1): 1-9.
doi: 10.1038/s41598-016-0001-8
[24]   Schilling C, Koffas M A G, Sieber V, et al. Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression. ACS Synthetic Biology, 2020, 9(12): 3353-3363.
doi: 10.1021/acssynbio.0c00424 pmid: 33238093
[25]   Fonfara I, Richter H, Bratovič M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016, 532(7600): 517-521.
doi: 10.1038/nature17945
[26]   Zhang Y, Yuan J F. CRISPR/Cas12a-mediated genome engineering in the photosynthetic bacterium Rhodobacter capsulatus. Microbial Biotechnology, 2021, 14(6): 2700-2710.
doi: 10.1111/1751-7915.13805 pmid: 33773050
[27]   Tang X, Lowder L G, Zhang T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3(3): 1-5.
[28]   Carroll D. Genome engineering with zinc-finger nucleases. Genetics, 2011, 188(4): 773-782.
doi: 10.1534/genetics.111.131433 pmid: 21828278
[29]   Yamano T, Nishimasu H, Zetsche B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell, 2016, 165(4): 949-962.
doi: 10.1016/j.cell.2016.04.003 pmid: 27114038
[30]   Song B, Yang S, Hwang G H, et al. Analysis of NHEJ-based DNA repair after CRISPR-mediated DNA cleavage. International Journal of Molecular Sciences, 2021, 22(12): 6397.
doi: 10.3390/ijms22126397
[31]   Alattas H. Integration of a non-homologous end-joining pathway into prokaryotic cells to enable repair of double-stranded breaks induced by Cpf1. Perth: Murdoch University, 2021.
[32]   Ohnishi T, Mori E, Takahashi A. DNA double-strand breaks: their production, recognition, and repair in eukaryotes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 669(1-2): 8-12.
doi: 10.1016/j.mrfmmm.2009.06.010
[33]   Ho H I, Fang J R, Cheung J, et al. Programmable CRISPR-Cas transcriptional activation in bacteria. Molecular Systems Biology, 2020, 16(7): e9427.
doi: 10.15252/msb.20199427
[34]   Leenay R T, Maksimchuk K R, Slotkowski R A, et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Molecular Cell, 2016, 62(1): 137-147.
doi: 10.1016/j.molcel.2016.02.031 pmid: 27041224
[35]   Ramesh A, Ong T, Garcia J A, et al. Guide RNA engineering enables dual purpose CRISPR-Cpf 1 for simultaneous gene editing and gene regulation in Yarrowia lipolytica. ACS Synthetic Biology, 2020, 9(4): 967-971.
doi: 10.1021/acssynbio.9b00498
[36]   Kim S K, Kim H, Ahn W C, et al. Efficient transcriptional gene repression by type V-A CRISPR-Cpf 1 from Eubacterium eligens. ACS Synthetic Biology, 2017, 6(7): 1273-1282.
doi: 10.1021/acssynbio.6b00368
[37]   Larson M H, Gilbert L A, Wang X W, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8(11): 2180-2196.
doi: 10.1038/nprot.2013.132 pmid: 24136345
[38]   Geng Y M, Yan H Q, Li P, et al. A highly efficient in vivo plasmid editing tool based on CRISPR-Cas12a and phage λ red recombineering. Journal of Genetics and Genomics, 2019, 46(9): 455-458.
doi: 10.1016/j.jgg.2019.07.006
[39]   Ao X, Yao Y, Li T, et al. A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a. Frontiers in Microbiology, 2018, 9: 2307.
doi: 10.3389/fmicb.2018.02307
[40]   Yan M Y, Yan H Q, Ren G X, et al. CRISPR-Cas12a-assisted recombineering in bacteria. Applied and Environmental Microbiology, 2017, 83(17): e00947-e00917.
[41]   Wang C K, Xia Q, Zhang Q H, et al. CRISPR-Cas12a system with synergistic phage recombination proteins for multiplex precision editing in human cells. Frontiers in Cell and Developmental Biology, 2022, 9: 719705.
doi: 10.3389/fcell.2021.719705
[42]   Li P, Zhang L J, Li Z F, et al. Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations. Cellular and Molecular Life Sciences, 2020, 77(19): 3875-3884.
doi: 10.1007/s00018-019-03396-8 pmid: 31848638
[43]   Sichani A S, Ranjbar M, Baneshi M, et al. A review on advanced CRISPR-based genome-editing tools: base editing and prime editing. Molecular Biotechnology, 2023, 65(6): 849-860.
doi: 10.1007/s12033-022-00639-1
[44]   Wang X, Ding C F, Yu W X, et al. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Reports, 2020, 31(9): 107723.
doi: 10.1016/j.celrep.2020.107723
[45]   Li X S, Wang Y, Liu Y J, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nature Biotechnology, 2018, 36(4): 324-327.
doi: 10.1038/nbt.4102 pmid: 29553573
[46]   Chen F B, Lian M, Ma B X, et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Communications Biology, 2022, 5(1): 1163.
doi: 10.1038/s42003-022-04152-8 pmid: 36323848
[47]   Gürel F, Zhang Y X, Sretenovic S, et al. CRISPR-Cas nucleases and base editors for plant genome editing. aBIOTECH, 2020, 1(1): 74-87.
doi: 10.1007/s42994-019-00010-0 pmid: 36305010
[48]   Tan J J, Zhang F, Karcher D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nature Communications, 2019, 10(1): 439.
doi: 10.1038/s41467-018-08034-8 pmid: 30683865
[49]   Joseph R C, Sandoval N R. Single and multiplexed gene repression in solventogenic Clostridium via Cas12a-based CRISPR interference. Synthetic and Systems Biotechnology, 2023, 8(1): 148-156.
doi: 10.1016/j.synbio.2022.12.005
[50]   Xin Q L, Wang B, Pan L. Development and application of a CRISPR-dCpf1 assisted multiplex gene regulation system in Bacillus amyloliquefaciens LB1ba02. Microbiological Research, 2022, 263: 127131.
doi: 10.1016/j.micres.2022.127131
[51]   Breinig M, Schweitzer A Y, Herianto A M, et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nature Methods, 2019, 16(1): 51-54.
doi: 10.1038/s41592-018-0262-1 pmid: 30559432
[52]   Sara B, Govinda G, María N L J. SEVA-Cpf1, a CRISPR-Cas12a vector for genome editing in cyanobacteria. Microbial Cell Factories, 2022, 21(1): 103.
doi: 10.1186/s12934-022-01830-4 pmid: 35643551
[53]   Huang H X, Huang G J, Tan Z H, et al. Engineered Cas12a-plus nuclease enables gene editing with enhanced activity and specificity. BMC Biology, 2022, 20(1): 91.
doi: 10.1186/s12915-022-01296-1 pmid: 35468792
[54]   Kim H J, Oh S Y, Lee S J. Single-base genome editing in Corynebacterium glutamicum with the help of negative selection by target-mismatched CRISPR/Cpf1. Journal of Microbiology and Biotechnology, 2020, 30(10): 1583-1591.
doi: 10.4014/jmb.2006.06036
[55]   Chen Z H, Sun J Y, Guan Y, et al. Engineered DNase-inactive Cpf 1 variants to improve targeting scope for base editing in E. coli. Synthetic and Systems Biotechnology, 2021, 6(4): 326-334.
doi: 10.1016/j.synbio.2021.09.002
[56]   Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.
[57]   Jiang Y, Chen B, Duan C L, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 2015, 81(7): 2506-2514.
doi: 10.1128/AEM.04023-14 pmid: 25636838
[58]   Shen P J, Gu S Y, Jin D, et al. Engineering metabolic pathways for cofactor self-sufficiency and serotonin production in Escherichia coli. ACS Synthetic Biology, 2022, 11(8): 2889-2900.
doi: 10.1021/acssynbio.2c00298
[59]   Wu H X, Yang J H, Shen P J, et al. High-level production of indole-3-acetic acid in the metabolically engineered Escherichia coli. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1916-1924.
doi: 10.1021/acs.jafc.0c08141
[60]   Zhu X W, Wu Y K, Lv X Q, et al. Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli. ACS Synthetic Biology, 2022, 11(5): 1897-1907.
doi: 10.1021/acssynbio.2c00041
[61]   Ko Y J, Kim M, You S K, et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metabolic Engineering, 2021, 66: 217-228.
doi: 10.1016/j.ymben.2021.04.013
[62]   Ko Y J, Cha J, Jeong W Y, et al. Bio-isopropanol production in Corynebacterium glutamicum: metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping. Bioresource Technology, 2022, 354: 127171.
doi: 10.1016/j.biortech.2022.127171
[63]   Shen W, Zhang J, Geng B N, et al. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis. Microbial Cell Factories, 2019, 18(1): 162.
doi: 10.1186/s12934-019-1219-5 pmid: 31581942
[64]   Bao J C, de Dios Mateos E, Scheller S. Efficient CRISPR/Cas12a-based genome-editing toolbox for metabolic engineering in Methanococcus maripaludis. ACS Synthetic Biology, 2022, 11(7): 2496-2503.
doi: 10.1021/acssynbio.2c00137
[65]   Jiang Y, Qian F H, Yang J J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017, 8(1): 15179.
doi: 10.1038/ncomms15179
[66]   Li L, Wei K K, Zheng G S, et al. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Applied and Environmental Microbiology, 2018, 84(18): e00827-18.
[67]   Mohanraju P, Mougiakos I, Albers J, et al. Development of a Cas12a-based genome editing tool for moderate thermophiles. The CRISPR Journal, 2021, 4(1): 82-91.
doi: 10.1089/crispr.2020.0086
[68]   Zhou Y J, Liu X Q, Wu J C, et al. CRISPR-Cas12a-assisted genome editing in Amycolatopsis mediterranei. Frontiers in Bioengineering and Biotechnology, 2020, 8: 698.
doi: 10.3389/fbioe.2020.00698
[69]   Ha D I, Lee J M, Lee N E, et al. Highly efficient and safe genome editing by CRISPR-Cas12a using CRISPR RNA with a ribosyl-2'-O-methylated uridinylate-rich 3'-overhang in mouse zygotes. Experimental & Molecular Medicine, 2020, 52(11): 1823-1830.
[70]   Zhang Y, Long C Z, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science Advances, 2017, 3(4): e1602814.
doi: 10.1126/sciadv.1602814
[71]   Sun W J, Wang J Q, Hu Q Y, et al. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6(21): eaba2983.
doi: 10.1126/sciadv.aba2983
[72]   Lee S H, Yu J, Hwang G H, et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene, 2017, 36(49): 6823-6829.
doi: 10.1038/onc.2017.281 pmid: 28846115
[73]   Li T W, Zhu L W, Xiao B X, et al. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells. Biotechnology Advances, 2019, 37(1): 21-27.
doi: S0734-9750(18)30176-9 pmid: 30399413
[74]   Chew W L. Immunity to CRISPR cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10(1): e1408.
[75]   Kleinstiver B P, Tsai S Q, Prew M S, et al. Genome-wide specificities of CRISPR-Cas Cpf 1 nucleases in human cells. Nature Biotechnology, 2016, 34(8): 869-874.
doi: 10.1038/nbt.3620 pmid: 27347757
[76]   Yoon A R, Jung B K, Choi E, et al. CRISPR-Cas12a with an oAd induces precise and cancer-specific genomic reprogramming of EGFR and efficient tumor regression. Molecular Therapy, 2020, 28(10): 2286-2296.
doi: 10.1016/j.ymthe.2020.07.003 pmid: 32682455
[1] FENG Shuang,WANG Chun-wei,SU Xiao-hu. Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing[J]. China Biotechnology, 2022, 42(9): 83-92.
[2] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[3] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[4] Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation[J]. China Biotechnology, 2018, 38(7): 94-101.
[5] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[6] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[7] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[8] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[9] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[10] PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique[J]. China Biotechnology, 2015, 35(11): 77-84.
[11] ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology[J]. China Biotechnology, 2014, 34(7): 76-80.
[12] YUAN Di, YANG Yi-shu, LI Ze-lin, ZENG Yi. Transcriptional Regulation of HIV-1 Gene Expression[J]. China Biotechnology, 2014, 34(5): 80-86.
[13] XIE Ke, RAO Li-qun, LI Hong-wei, AN Xue-li, FANG Cai-chen, WAN Xiang-yuan. Research Progress of Genome Editing in Plants[J]. China Biotechnology, 2013, 33(6): 99-104.
[14] LIU Si-ye, XIA Hai-bin. A New Targeted Gene Editing Technology Mediated by CRISPR-Cas System[J]. China Biotechnology, 2013, 33(10): 117-123.
[15] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA[J]. China Biotechnology, 2011, 31(12): 109-114.