Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (2): 101-111    DOI: 10.13523/j.cb.20190212
Orginal Article     
Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine
Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU()
Institute of Biological Sciences, Fudan University, Beijing 200032,China
Download: HTML   PDF(1150KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Precision medicine integrates multiple types of data, including -omics, clinical, environmental and behavioral data to facilitate the personalized therapy, prevention and management. The cost reduction of gene/genome sequencing, the understanding of cancers from pathology to molecular level, and improvement of some subjects and technologies promoted the formation and development of precision medicine. The precision medicine will have a huge impact on human health. In this article, concept, purpose and application of precision was introduced, and application of next-generation DNA sequencing in precision medicine was also presented. The foundation of the precision medicine is genomic data, sample management of samples, and data quality control. Artificial intelligence is the future of precision medicine. Meanwhile, the characteristics of genomic data and the management of various health-related data are also a huge challenge for precision medicine.



Key wordsPrecision medicine      Omics data      Clinical data      Data security      Artificial intelligence     
Received: 10 January 2019      Published: 26 March 2019
ZTFLH:  Q819  
Cite this article:

Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU. Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine. China Biotechnology, 2019, 39(2): 101-111.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190212     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I2/101

Fig.1 Development of Next Generation Sequencing
Fig.2 Big data platform for bionetworks
Fig.3 Technology roadmap for Bionetworks to precision medicine
Fig.4 Frame of grade based deep learning for glioma
[1]   National Research Council ( US). Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington (DC): National Academies Press. 2011.
[2]   Collins F S, Varmus H . A new initiative on precision medicine. The New England Journal of Medicine, 2015,372(9):793-795.
doi: 10.1056/NEJMp1500523 pmid: 25635347
[3]   杨湘玲, 朱健生, 刘贤云 , 等. 新型无创DNA产前检测在诊断胎儿染色体非整倍体疾病中的应用. 中国产前诊断杂志(电子版), 2013,5(2):15-17.
[3]   Yang X L, Zhu J S, LIU X Y , et al. Impication of noninvasive DNA prenatal diagnosis of chromasomal aneuploidy. Chinese Journal of Prenatal Diagnosis (electronic version), 2013,5(2):15-17.
[4]   Fonda A F, Stoll K, Bernhardt B A . Pre-and post-test genetic counseling for chromosomal and Mendelian disorders. Seminars in Perinatology, 2016,40(1):44-55.
doi: 10.1053/j.semperi.2015.11.007 pmid: 26718445
[5]   Willig L K, Petrikin J E, Smith L D , et al, Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. The Lancet, 2015,3(5):377-387.
doi: 10.1016/S2213-2600(15)00139-3 pmid: 25937001
[6]   Yang Y P, Muzny D M, Reid J G , et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med, 2013,369(16):1502-1511.
doi: 10.1056/NEJMoa1306555
[7]   吴一龙 . 精准癌医学: 走向未来的路. 循证医学, 2015,15(1):1-2.
doi: 10.3969/j.issn.1671-5144.2015.01.001
[7]   Wu Y L . Precision cancer medicine: A way to the future. Journal of Evidence-Based Medicine, 2015,15(1):1-2.
doi: 10.3969/j.issn.1671-5144.2015.01.001
[8]   Tang L D, Xu W R . Challenges and opportunities for pharmaceutical industry in the era of precision medicion. Drugs&Clinic, 2015,4:351-354
[9]   Roychowdhury S, Matthew K, Robinson D R , et al, Personalized oncology through integrative high-throughput sequencing: a pilot study. Science Translational Medicine, 2011, 3(111): 111ra121-111ra121.
[10]   李艳明, 杨亚东, 张昭军 , 等. 精准医学大数据的分析与共享. 中国医学前沿杂志(电子版), 2015,7(6):4-10.
doi: 10.3969/j.issn.1674-7372.2015.06.002
[10]   Li Y M, Yang Y D, Zhang Z J , et al. The share and analyses of big data for precision medicine. Chinese Journal of the Frontiers of Medical Science, 2015,7(6):4-10.
doi: 10.3969/j.issn.1674-7372.2015.06.002
[11]   徐武夷, 杨文 . 乳腺癌治疗进展. 转化医学杂志, 2011,24(1):29-33.
[11]   Xu W Y, Yang W . Progression of breast cancer therapy. Journal of Naval General Hospital, 2011,24(1):29-33.
[12]   Alizadeh A A, Eisen M B, Davis R E , et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000,403(6769):503-511.
doi: 10.1038/35000501
[13]   Begley C G, Ellis L M . Drug development: Raise standards for preclinical cancer research. Nature, 2012,483(7391):531-533.
doi: 10.1038/483531a
[14]   Shen S, Qu Y C, Zhang J . The application of next generation sequencing on epigenetic study. Hereditas, 2014,36(3):256-275.
doi: 10.3724/SP.J.1005.2014.0256 pmid: 24846966
[15]   Zhang Y, Ng H H, Erdjument-Bromage H , et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 1999,13(15):1924-1935.
doi: 10.1101/gad.13.15.1924 pmid: 10444591
[16]   Widschwendter M, Fiegl Heidi, Egle D , et al. Epigenetic stem cell signature in cancer. Nature Genetics, 2007,39(2):157-158.
doi: 10.1038/ng1941 pmid: 17200673
[17]   许力凡, 张记, 田志强 , 等. 表观遗传学与肿瘤干细胞. 遗传, 2013,35(9):1049-1057.
doi: 10.3724/SP.J.1005.2013.01049
[17]   Xu L F, Zhang J, Tian Z Q , et al. Epigenetics in cancer stem cell. Hereditas, 2013,35(9):1049-1057.
doi: 10.3724/SP.J.1005.2013.01049
[18]   Luo J, Jin F . Recent advances in understanding the impact of intestinal microbiota on host behavior. Chinese Science Bulletin, 2014,59(22):2169-2190.
doi: 10.1360/N972014-00120
[19]   盛华芳, 周宏伟 . 微生物组学大数据分析方法、挑战与机遇. 南方医科大学学报, 2015,35(7):931-934.
doi: 10.3969/j.issn.1673-4254.2015.07.01
[19]   Sheng H F, Zhou H W . Methods, challenge and opportunities for big data analyses of microbiome. Journal Southern Medical University, 2015,35(7):931-934.
doi: 10.3969/j.issn.1673-4254.2015.07.01
[20]   支沛轩 , 浅述肿瘤精准医疗的研究进展. 中国实用医药, 2016,11(4):287-288.
doi: 10.14163/j.cnki.11-5547/r.2016.04.216
[20]   Zhi P X . Brief review of progression of cancer precision medicine. China Practical Medicine, 2016,11(4):287-288.
doi: 10.14163/j.cnki.11-5547/r.2016.04.216
[21]   郑广勇, 杨桢, 曹瑞芳 , 等. 宏基因组大数据分析的质量控制流程规范. 大数据, 2018,4(3):3-12.
[21]   Zheng G Y, Yang Z, Cao R F , et al. Quality control of big data analysis for metagenomics. Big Data Research, 2018,4(3):3-12.
[22]   焦怡琳, 王吉春, 张群 , 等. 中国在精准医学领域面临的机遇与挑战. 中国公共卫生管理, 2015,31(5):601-603.
[22]   Jiao Y L, Wang J C, Zhang Q , et al. Opportunities and challenges of China precision medicine. Chinese Journal of Public Health Management, 2015,31(5):601-603.
[23]   郑洁, 李维 . 精准医学的再思考. 医学信息学杂志, 2016,37(1):8-12.
doi: 10.3969/j.issn.1673-6036.2016.01.002
[23]   Zheng J, Li W . Rethinking of precision medicine. Journal of Medical Informatics, 2016,37(1):8-12.
doi: 10.3969/j.issn.1673-6036.2016.01.002
[24]   吴家睿 . 建立在系统生物学基础上的精准医学. 生命科学, 2015,27(5):558-563.
[24]   Wu J R . Precision medicine on system biology. Chinese Bulletin of Life Sciences, 2015,27(5):558-563.
[25]   肖飞 . 从循证医学到精准医学的思考. 中华肾病研究电子杂志, 2014,3(3):123-128.
doi: 10.3877/cma.j.issn.2095-3216.2014.03.002
[25]   Xiao F . A paradigm shift from evidence-based medicine to precision medicine. Chinese Journal of Kidney Disease Invesigation, 2014,3(3):123-128.
doi: 10.3877/cma.j.issn.2095-3216.2014.03.002
[26]   Dong X, Berti-Equille L, Srivastava D . Truth discovery and copying detection in a dynamic world. Proceedings of the VLDB Endowment, 2009,2(1):562-573.
doi: 10.14778/1687627.1687691
[27]   Luxton D D . Recommendations for the ethical use and design of artificial intelligent care providers. Artif Intell Med, 2014,62(1):1-10.
doi: 10.1016/j.artmed.2014.06.004 pmid: 25059820
[28]   Bartgis J, Albright G . Online role-play simulations with emotionally responsive avatars for the early detection of Native youth psychological distress, including depression and suicidal ideation. Am Indian Alsk Native Ment Health Res, 2016,23(2):1-27.
doi: 10.5820/aian.2302.2016.1 pmid: 27115130
[29]   Pouke M, Hakkila J . Elderly healthcare monitoring using an avatar-based 3D virtual environment. Int J Environ Res Public Health, 2013,10(12):7283-7298.
doi: 10.3390/ijerph10127283 pmid: 3881167
[30]   Esteva A, Kuprel Brett, Novoa R A , et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017,542(7639):115-118.
doi: 10.1038/nature21056 pmid: 28117445
[31]   Gulshan V, Peng L, Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016,316(22):2402-2410.
doi: 10.1001/jama.2016.17216 pmid: 27898976
[32]   Edge S B, Compton C C . The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol, 2010,17(6):1471-1474.
doi: 10.1245/s10434-010-0985-4
[33]   Fanshawe T R, Lynch A G, Ellis I O , et al. Assessing agreement between multiple raters with missing rating information, applied to breast cancer tumour grading. PLoS One, 2008,3(8):e2925.
doi: 10.1371/journal.pone.0002925 pmid: 18698346
[34]   Ertosun M G, Rubin D L . Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. AMIA Annu Symp Proc, 2015: 1899-1908.
pmid: 26958289
[35]   Cornet G. Robot companions and ethics a pragmatic approach of ethical design. J Int Bioethique, 2013, 24(4): 49- 58, 179-180.
[36]   Larson J A, Johnson M H, Bhayani S B . Application of surgical safety standards to robotic surgery: five principles of ethics for nonmaleficence. J Am Coll Surg, 2014,218(2):290-293.
doi: 10.1016/j.jamcollsurg.2013.11.006 pmid: 24315652
[37]   Somashekhar S P, Sepúlveda M J, Puglielli S , et al. Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol, 2018,29(2):418-423.
doi: 10.1093/annonc/mdx781 pmid: 29324970
[38]   Alanazi H O, Abdullah A H, Qureshi K N . A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Journal of Medical Systems, 2017,41(4):1-10.
doi: 10.1007/s10916-016-0650-y
[39]   Crosby J, Peloso G M, Auer P L , et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med, 2014,371(1):22-31.
doi: 10.1056/NEJMoa1307095 pmid: 4180269
[40]   Dewey F E, Gusarova V , O’Dushlaine C,et al. Inactivating variants in angptl4 and risk of coronary artery disease. N Engl J Med, 2016,374(12):1123-1133.
doi: 10.1056/NEJMoa1510926
[41]   Cohen J, Pertsemlidis A , et al.Kotowski I K. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet, 2005,37(2):161-165.
doi: 10.1038/ng1509 pmid: 15654334
[42]   Abifadel M, Varret M, Rabès J P , et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 2003,34(2):154-156.
doi: 10.1038/ng1161 pmid: 12730697
[43]   Seidah N G . The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob Cardiol Sci Pract, 2017,1:e201702.
doi: 10.21542/gcsp.2017.2 pmid: 5621713
[44]   Nioi P, Sigurdsson A, Thorleifsson G , et al., Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med, 2016,374(22):2131-2141.
doi: 10.1056/NEJMoa1508419 pmid: 27192541
[45]   Tybjaerg-Hansen A . The sialylation pathway and coronary artery disease. N Engl J Med, 2016,374(22):2169-2171.
doi: 10.1056/NEJMe1604773 pmid: 27192165
[46]   Lamb J, Crawford E D, Peck D , et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006,313(5795):1929-1935.
doi: 10.1126/science.1132939 pmid: 17008526
[47]   Kuchenbaecker K B, Hopper J L, Barnes D R , et al. Risks of breast, ovarian, and contralateral breast cancer for brca1 and brca2 mutation carriers. JAMA, 2017,317(23):2402-2416.
doi: 10.1001/jama.2017.7112 pmid: 28632866
[48]   Paz-Ares L, Tan E H , O’Byrne K,et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol, 2017,28(2):270-277.
doi: 10.1093/annonc/mdw611 pmid: 5391700
[49]   Tsao M S, Aviel-Ronen S, Ding K , et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol, 2007,25(33):5240-5247.
doi: 10.1200/JCO.2007.12.6953
[50]   Solomon B J, Mok T, Kim D W , et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med, 2014,371(23):2167-2177.
doi: 10.1056/NEJMoa1408440
[1] PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress[J]. China Biotechnology, 2019, 39(9): 84-90.
[2] Zhi-yong XIE,Xiang ZHOU. Machine Learning in Medical Imaging:the Applications in Drug Discovery and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 90-100.
[3] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[4] Ling WANG,Xin CHEN. Design and Construction of Tumor Precision Medicine Knowledge Database[J]. China Biotechnology, 2018, 38(5): 40-46.