Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (10): 96-108    DOI: 10.13523/j.cb.2304024
    
Progress in the Synthesis of Tetraterpenes by Microorganisms
ZHENG Li-ming,WANG Peng-chao**()
Aulin College, Northeast Forestry University, Harbin 150040, China
Download: HTML   PDF(1515KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tetrapenoids, mainly carotenoids, are widely used in medical and food applications due to their antioxidant, anti-inflammatory, and anti-cancer properties, but traditional methods of extraction from natural products and chemical synthesis have many limitations and are not conducive to industrial mass production due to high costs or poor product activity and purity. In recent years, microbial synthesis has become a trend for synthesizing high-value products based on gene editing and other technologies. This review introduces the main pathways of carotenoid biosynthesis, reviews the progress of carotenoid synthesis in different types of chassis strains in recent years, and summarizes the main optimization strategies used in current research. It shows the recent progress of carotenoid synthesis by microorganisms and the advantages and disadvantages of the comparison between different types of chassis bacteria by comparing the synthesis strategies and yields of different strains, and points out the development direction to further improve the titer of target products by summarizing the main optimization methods. It provides more references for the subsequent research related to the synthesis of carotenoids by microorganisms.



Key wordsTetrapenoid      Carotenoid      Biosynthesis      Optimization method     
Received: 12 April 2023      Published: 02 November 2023
ZTFLH:  Q936  
Cite this article:

ZHENG Li-ming, WANG Peng-chao. Progress in the Synthesis of Tetraterpenes by Microorganisms. China Biotechnology, 2023, 43(10): 96-108.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304024     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I10/96

Fig.1 Chemical structure of some carotenoids
Fig.2 The first stage of tetriterpenoid biosynthesis
Fig.3 The second stage of tetriterpenoid biosynthesis
Fig.4 Chemical structure of some tetriterpenoids modified products
产物名称 天然菌种名称 报道产量 参考文献
番茄红素 Dietzia natronolimnaea HS-1 (8.26±0.17)mg/L [22]
β-胡萝卜素 Rhodococcus opacus PD630 0.7 mg/L [23]
虾青素 Agrobacterium aurantiacum - [1]
Sphingomonas spp. - [12]
Brevundimonas sp. 601.2 μg/g DCW [12]
Paracoccus strain N81106 - [13]
Altererythrobacter ishigakiensis sp. - [24]
角黄素 Corynebacterium michiganense - [17]
Micrococcus roseus - [18]
Brevibacterium sp. strain KY 4313 - [19]
Gordonia Jacobaea MV-1 966.78 μg/g DCW [20]
玉米黄质 Flavobacterium multivorum (10.65±0.63)μg/mL [15]
Table 1 Bacteria that naturally synthesize carotenoids
产物名称 天然菌种名称 报道产量 参考文献
番茄红素 Chlorella regularis Y-21 - [36]
Haematococcus pluvialis SAG 19-a 1.45 mg/g DCW [37]
Dunaliella salina CCAP 19/18 0.68 mg/L [38]
Dunaliella bardawil - [39]
β-胡萝卜素 Dunaliella Microalgae 15 mg/L [32]
虾青素 Haematococcus pluvialis 175.7 mg/L [26]
叶黄素 Muriellopsis sp. 4.3 mg/g DCW [32]
Scenedesmus almeriensis 4.5 mg/g DCW [32]
Chlorella protothecoides 4.6 mg/g DCW [32]
Chlorella zofingiensis 3.4 mg/g DCW [32]
Table 2 Algae that naturally synthesize carotenoids
产物名称 天然菌种名称 报道产量 参考文献
番茄红素 Blakeslea trispora 54.496 mg/L [45]
Phycomyces blakesleeanus - [45]
Rhodotorula glutinis YB-252 340 mg/L [48]
β-胡萝卜素 Blakeslea trispora 1 555.232 mg/L [45]
Phycomyces blakesleeanus - [45]
Sporidiobolus pararoseus KM281507 128.97 mg/L [47]
虾青素 Xanthophyllomyces denrorhous - [42]
Table 3 Fungi that naturally synthesize carotenoids
[1]   Bhosale P, Bernstein P S. Microbial xanthophylls. Applied Microbiology and Biotechnology, 2005, 68(4): 445-455.
pmid: 16001255
[2]   肖素荣, 李京东. 虾青素的特性及应用前景. 中国食物与营养, 2011, 17(5): 33-35.
[2]   Xiao S R, Li J D. Features of astaxanthin and its application prospects. Food and Nutrition in China, 2011, 17(5): 33-35.
[3]   Khan U M, Sevindik M, Zarrabi A, et al. Lycopene: food sources, biological activities, and human health benefits. Oxidative Medicine and Cellular Longevity, 2021, 2021: 2713511.
[4]   Amiri-Rigi A, Abbasi S. Microemulsion-based lycopene extraction: effect of surfactants, co-surfactants and pretreatments. Food Chemistry, 2016, 197: 1002-1007.
doi: 10.1016/j.foodchem.2015.11.077 pmid: 26617046
[5]   韩文杰, 张俊强, 袁新英, 等. 从番茄皮渣中提取番茄红素工业生产工艺的优化. 中国食品添加剂, 2014, 123(2): 137-140.
[5]   Han W J, Zhang J Q, Yuan X Y, et al. Optimization of manufacturing technique for extracting lycopene from tomato peel. China Food Additives, 2014, 123(2): 137-140.
[6]   Saini R K, Keum Y S. Carotenoid extraction methods: a review of recent developments. Food Chemistry, 2018, 240: 90-103.
doi: S0308-8146(17)31252-9 pmid: 28946359
[7]   Karrer P, Eugster C H. Synthese von carotinoiden V. gleichzeitige synthetische bildung von ε1-carotin, β-carotin und d,l-α -carotin. Helvetica Chimica Acta, 1950, 33(6): 1952-1954.
doi: 10.1002/hlca.v33:6
[8]   Yamano Y, Sato Y, Watanabe Y, et al. Carotenoids and related polyenes. Part 6. Stereoselective synthesis of astaxanthin analogues and their antioxidant activities. Journal of the Chemical Society, Perkin Transactions 1, 2001(16): 1862-1869.
[9]   Chatzivasileiou A O, Ward V, Edgar S M, et al. Two-step pathway for isoprenoid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2): 506-511.
[10]   马转转, 庞潇卿, 谌容, 等. 萜类化合物生物合成途径中关键酶的研究进展. 杭州师范大学学报(自然科学版), 2015, 14(6): 608-615.
[10]   Ma Z Z, Pang X Q, Chen R, et al. Research advances of key enzymes in the biosynthes is pathways of isoprenoids. Journal of Hangzhou Normal University (Natural Sciences Edition), 2015, 14(6): 608-615.
[11]   Ma Y S, Li J B, Huang S W, et al. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metabolic Engineering, 2021, 68: 152-161.
doi: 10.1016/j.ymben.2021.10.004
[12]   Asker D. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9101-9109.
doi: 10.1021/acs.jafc.7b03556 pmid: 28920431
[13]   Fang N, Wang C K, Liu X F, et al. De novo synthesis of astaxanthin: from organisms to genes. Trends in Food Science & Technology, 2019, 92: 162-171.
[14]   Johnson E A, Schroeder W A. Microbial carotenoids. Advances in Biochemical Engineering/Biotechnology, 1996, 53: 119-178.
[15]   Bhosale P, Larson A J, Bernstein P S. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. Journal of Applied Microbiology, 2004, 96(3): 623-629.
pmid: 14962143
[16]   Guyomarc’h F, Binet A, Dufossé L. Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. Journal of Industrial Microbiology and Biotechnology, 2000, 24(1): 64-70.
doi: 10.1038/sj.jim.2900761
[17]   Saperstein S, Starr M P. The ketonic carotenoid canthaxanthin isolated from a colour mutant of Corynebacterium michiganense. The Biochemical Journal, 1954, 57(2): 273-275.
doi: 10.1042/bj0570273
[18]   Goodwin T W. Biosynthesis of carotenoids. The Biochemistry of the Carotenoids. Dordrecht: Springer, 1980: 33-76.
[19]   Nelis H J, De Leenheer A P. Microbial sources of carotenoid pigments used in foods and feeds. Journal of Applied Bacteriology, 1991, 70(3): 181-191.
doi: 10.1111/jam.1991.70.issue-3
[20]   de Miguel T, Sieiro C, Poza M, et al. Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. Journal of Agricultural and Food Chemistry, 2001, 49(3): 1200-1202.
pmid: 11312835
[21]   Tian B, Hua Y J. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends in Microbiology, 2010, 18(11): 512-520.
doi: 10.1016/j.tim.2010.07.007
[22]   Nasrabadi M R N, Razavi S H. High levels lycopene accumulation by Dietzia natronolimnaea HS-1 using lycopene cyclase inhibitors in a fed-batch process. Food Science and Biotechnology, 2010, 19(4): 899-906.
doi: 10.1007/s10068-010-0127-6
[23]   Suwaleerat T, Thanapimmetha A, Srisaiyoot M, et al. Enhanced production of carotenoids and lipids by Rhodococcus opacus PD630. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2160-2169.
doi: 10.1002/jctb.2018.93.issue-8
[24]   Matsumoto M, Iwama D, Arakaki A, et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(12): 2956-2961.
doi: 10.1099/ijs.0.024729-0
[25]   Shah M M R, Liang Y M, Cheng J J, et al. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in Plant Science, 2016, 7: 531.
[26]   Kang C D, Lee J S, Park T H, et al. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Applied Microbiology and Biotechnology, 2005, 68(2): 237-241.
doi: 10.1007/s00253-005-1889-2 pmid: 15711942
[27]   Kaewpintong K, Shotipruk A, Powtongsook S, et al. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technology, 2007, 98(2): 288-295.
pmid: 16516464
[28]   Ranjbar R, Inoue R, Shiraishi H, et al. High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochemical Engineering Journal, 2008, 39(3): 575-580.
doi: 10.1016/j.bej.2007.11.010
[29]   García-Malea M C, Acién F G, Del Río E, et al. Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnology and Bioengineering, 2009, 102(2): 651-657.
doi: 10.1002/bit.22076 pmid: 18767188
[30]   Mota G C P, Moraes L B S, Oliveira C Y B, et al. Astaxanthin from Haematococcus pluvialis: processes, applications, and market. Preparative Biochemistry & Biotechnology, 2022, 52(5): 598-609.
[31]   Wang J F, Han D X, Sommerfeld M R, et al. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. Journal of Applied Phycology, 2013, 25(1): 253-260.
doi: 10.1007/s10811-012-9859-4
[32]   Del Campo J A, García-González M, Guerrero M G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 2007, 74(6): 1163-1174.
doi: 10.1007/s00253-007-0844-9 pmid: 17277962
[33]   Francis G W, Strand L P, Lien T, et al. Variations in the carotenoid content of Chlamydomonas reinhardii throughout the cell cycle. Archives of Microbiology, 1975, 104(3): 249-254.
pmid: 1190948
[34]   Del Campo J A, Moreno J, Rodríguez H, et al. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 2000, 76(1): 51-59.
doi: 10.1016/s0168-1656(99)00178-9 pmid: 10784296
[35]   Del Campo J A, Rodríguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (chlorophyta). Applied Microbiology and Biotechnology, 2004, 64(6): 848-854.
doi: 10.1007/s00253-003-1510-5 pmid: 14689249
[36]   Ishikawa E, Abe H. Lycopene accumulation and cyclic carotenoid deficiency in heterotrophic Chlorella treated with nicotine. Journal of Industrial Microbiology and Biotechnology, 2004, 31(12): 585-589.
doi: 10.1007/s10295-004-0179-9
[37]   Vidhyavathi R, Sarada R, Ravishankar G A. Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enzyme and Microbial Technology, 2009, 45(2): 88-93.
doi: 10.1016/j.enzmictec.2009.05.005
[38]   Fazeli M R, Tofighi H, Madadkar-Sobhani A, et al. Nicotine inhibition of lycopene cyclase enhances accumulation of carotenoid intermediates by Dunaliella salina CCAP 19/18. European Journal of Phycology, 2009, 44(2): 215-220.
doi: 10.1080/09670260802578526
[39]   Liang M H, Hao Y F, Li Y M, et al. Inhibiting lycopene cyclases to accumulate lycopene in high β-carotene-accumulating Dunaliella bardawil. Food and Bioprocess Technology, 2016, 9(6): 1002-1009.
doi: 10.1007/s11947-016-1681-6
[40]   Sandmann G. Carotenoids and their biosynthesis in fungi. Molecules, 2022, 27(4): 1431.
doi: 10.3390/molecules27041431
[41]   Jing Y W, Wang Y X, Zhou D W, et al. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnology Advances, 2022, 61: 108033.
doi: 10.1016/j.biotechadv.2022.108033
[42]   Andrewes A G, Phaff H J, Starr M P. Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry, 1976, 15(6): 1003-1007.
doi: 10.1016/S0031-9422(00)84390-3
[43]   Kuzina V, Cerdá-Olmedo E. Ubiquinone and carotene production in the Mucorales blakeslea and Phycomyces. Applied Microbiology and Biotechnology, 2007, 76(5): 991-999.
pmid: 17609943
[44]   Mantzouridou F, Roukas T, Achatz B. Effect of oxygen transfer rate on β-carotene production from synthetic medium by Blakeslea trispora in shake flask culture. Enzyme and Microbial Technology, 2005, 37(7): 687-694.
doi: 10.1016/j.enzmictec.2005.02.020
[45]   Nanou K, Roukas T. Waste cooking oil: a new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresource Technology, 2016, 203: 198-203.
doi: 10.1016/j.biortech.2015.12.053
[46]   Mantzouridou F T, Naziri E. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions. Applied Microbiology and Biotechnology, 2017, 101(5): 1845-1856.
doi: 10.1007/s00253-016-7943-4 pmid: 27822738
[47]   Manowattana A, Techapun C, Laokuldilok T, et al. Enhancement of β-carotene-rich carotenoid production by a mutant Sporidiobolus pararoseus and stabilization of its antioxidant activity by microencapsulation. Journal of Food Processing and Preservation, 2020, 44(8): 12.
[48]   Hernández-Almanza A, Montañez-Sáenz J, Martínez-Ávila C, et al. Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Bioscience, 2014, 7: 31-36.
doi: 10.1016/j.fbio.2014.04.001
[49]   Schmidt-Dannert C. Engineering novel carotenoids in microorganisms. Current Opinion in Biotechnology, 2000, 11(3): 255-261.
doi: 10.1016/s0958-1669(00)00093-8 pmid: 10851142
[50]   Mata-Gómez L C, Montañez J C, Méndez-Zavala A, et al. Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factories, 2014, 13: 12.
doi: 10.1186/1475-2859-13-12 pmid: 24443802
[51]   Liu N, Liu B, Wang G Y, et al. Lycopene production from glucose, fatty acid and waste cooking oil by metabolically engineered Escherichia coli. Biochemical Engineering Journal, 2020, 155: 107488.
doi: 10.1016/j.bej.2020.107488
[52]   Sevgili A, Erkmen O. Improved lycopene production from different substrates by mated fermentation of Blakeslea trispora. Foods, 2019, 8(4): 120.
doi: 10.3390/foods8040120
[53]   Sun Y X, Sun L, Shang F, et al. Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochemistry, 2016, 51(5): 568-577.
doi: 10.1016/j.procbio.2016.02.004
[54]   Li X, Wang Z X, Zhang G L, et al. Improving lycopene production in Saccharomyces cerevisiae through optimizing pathway and chassis metabolism. Chemical Engineering Science, 2019, 193: 364-369.
doi: 10.1016/j.ces.2018.09.030
[55]   Kim M J, Noh M H, Woo S, et al. Enhanced lycopene production in Escherichia coli by expression of two MEP pathway enzymes from Vibrio sp. dhg. Catalysts, 2019, 9(12): 1003.
doi: 10.3390/catal9121003
[56]   Zhang X Y, Wang D G, Duan Y H, et al. Production of lycopene by metabolically engineered Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 2020, 84(3): 463-470.
doi: 10.1080/09168451.2019.1693250
[57]   Luo Z S, Liu N, Lazar Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metabolic Engineering, 2020, 61: 344-351.
doi: 10.1016/j.ymben.2020.07.010
[58]   Chen Y, Xiao W H, Wang Y, et al. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microbial Cell Factories, 2016, 15(1): 113.
doi: 10.1186/s12934-016-0509-4 pmid: 27329233
[59]   Gao S L, Tong Y Y, Zhu L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017, 41: 192-201.
doi: 10.1016/j.ymben.2017.04.004
[60]   Hong J, Park S H, Kim S, et al. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Applied Microbiology and Biotechnology, 2019, 103(1): 211-223.
doi: 10.1007/s00253-018-9449-8
[61]   Kildegaard K R, Adiego-Pérez B, Doménech Belda D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2017, 2(4): 287-294.
doi: 10.1016/j.synbio.2017.10.002
[62]   Ma T, Shi B, Ye Z L, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52: 134-142.
doi: 10.1016/j.ymben.2018.11.009
[63]   Li M, Zhou P P, Chen M K, et al. Spatiotemporal regulation of astaxanthin synthesis in S. cerevisiae. ACS Synthetic Biology, 2022, 11(8): 2636-2649.
doi: 10.1021/acssynbio.2c00044
[64]   Zhou P P, Li M, Shen B, et al. Directed coevolution of β-carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin. Journal of Agricultural and Food Chemistry, 2019, 67(4): 1072-1080.
doi: 10.1021/acs.jafc.8b05003 pmid: 30606005
[65]   买洁, 余霄, 李文娟, 等. 解脂耶氏酵母异源合成类胡萝卜素的研究进展. 南京工业大学学报(自然科学版), 2022, 44(5): 546-555.
[65]   Mai J, Yu X, Li W J, et al. Advances in heterologous biosynthesis of carotenoids in Yarrowia lipolytica. Journal of Nanjing University of Technology (Natural Science Edition), 2022, 44(5): 546-555.
[66]   Han J Y, Song J M, Seo S H, et al. Ty1-fused protein-body formation for spatial organization of metabolic pathways in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2018, 115(3): 694-704.
doi: 10.1002/bit.v115.3
[67]   Ma Y S, Liu N, Greisen P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13(1): 1-11.
doi: 10.1038/s41467-021-27699-2
[68]   Lee P C, Yoon Y G, Schmidt-Dannert C. Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris. Journal of Biotechnology, 2009, 140(3-4): 227-233.
doi: 10.1016/j.jbiotec.2009.01.019
[69]   Bhataya A, Schmidt-Dannert C, Lee P C. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochemistry, 2009, 44(10): 1095-1102.
doi: 10.1016/j.procbio.2009.05.012
[70]   Zhou Y K, Li G, Dong J K, et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47: 294-302.
doi: 10.1016/j.ymben.2018.03.020
[71]   Shi B, Ma T, Ye Z L, et al. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11148-11157.
doi: 10.1021/acs.jafc.9b04519
[72]   Bian Q, Zhou P P, Yao Z, et al. Heterologous biosynthesis of lutein in S. cerevisiae enabled by temporospatial pathway control. Metabolic Engineering, 2021, 67: 19-28.
doi: 10.1016/j.ymben.2021.05.008 pmid: 34077803
[73]   Bian Q, Jiao X, Chen Y, et al. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis. Biotechnology and Bioengineering, 2023, 120(2): 536-552.
doi: 10.1002/bit.v120.2
[74]   赵颖, 罗璇, 钟晓凌, 等. 响应面法优化产类胡萝卜素红酵母液体发酵培养基的研究. 化学与生物工程, 2007, 24(12): 39-42.
[74]   Zhao Y, Luo X, Zhong X L, et al. Optimization of submerged fermentation medium of Rhodotorula sp. D producing carotenoid with response surface methodology. Chemistry & Bioengineering, 2007, 24(12): 39-42.
[75]   刘晓桐, 孙欣宇, 刘玥, 等. 诱变筛选高产虾青素法夫酵母及发酵条件优化. 大连工业大学学报, 2021, 40(6): 396-400.
[75]   Liu X T, Sun X Y, Liu Y, et al. Screening of high astaxanthin producing Phaffia rhodozyma by mutagenesis and optimization of fermentation conditions. Journal of Dalian Dalian Polytechnic University, 2021, 40(6): 396-400.
[76]   Shi F, Zhan W B, Li Y F, et al. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma. World Journal of Microbiology and Biotechnology, 2014, 30(1): 125-133.
doi: 10.1007/s11274-013-1428-8
[77]   Lv X Q, Hueso-Gil A, Bi X Y, et al. New synthetic biology tools for metabolic control. Current Opinion in Biotechnology, 2022, 76: 102724.
doi: 10.1016/j.copbio.2022.102724
[78]   Zhou P P, Ye L D, Xie W P, et al. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Applied Microbiology and Biotechnology, 2015, 99(20): 8419-8428.
doi: 10.1007/s00253-015-6791-y
[79]   Xie W P, Lv X M, Ye L D, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015, 30: 69-78.
doi: 10.1016/j.ymben.2015.04.009
[80]   Zhou K, Yu C, Liang N, et al. Adaptive evolution and metabolic engineering boost lycopene production in Saccharomyces cerevisiae via enhanced precursors supply and utilization. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3821-3831.
doi: 10.1021/acs.jafc.2c08579
[81]   Bornscheuer U T, Huisman G W, Kazlauskas R J, et al. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185-194.
doi: 10.1038/nature11117
[1] JIANG Ji-peng, SUN Ya-nan, ZHANG Chen-chen, HAO Man, LI Xiang-xun, LIU Fu-feng, WANG Hai-kuan, LU Fu-ping, ZHANG Hui-tu. Advances in the Biosynthesis of Nonribosomal Peptide[J]. China Biotechnology, 2023, 43(8): 86-99.
[2] LI Ya-tong, MA Yuan-yuan, WANG Zhen-yang, SONG Hao. Research Progress of Application and Biosynthesis of Steviol Glycosides[J]. China Biotechnology, 2023, 43(1): 104-114.
[3] BIAN Yi-fan,LIU Shu-han,ZHANG Bei-meng,ZHANG Yu-long,LI Xin-tong,WANG Peng-chao. Advances in Microbial Synthesis of 2-Phenylethanol[J]. China Biotechnology, 2022, 42(8): 128-136.
[4] WANG Rong-xiang,SONG Jia,SUN Bo,YAN Xue,ZHANG Wan-zhong,ZHAO Chen. Research Progress of Function and Biosynthesis of Coumarins[J]. China Biotechnology, 2022, 42(12): 79-90.
[5] JI Chuan-fu,WANG Lu,GOU Min,SONG Wen-feng,XIA Zi-yuan,TANG Yue-qin. The Review of Biosynthesis and Molecular Regulation of Xanthan Gum[J]. China Biotechnology, 2022, 42(1/2): 46-57.
[6] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[7] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[8] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[9] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[10] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[11] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[12] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[13] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[14] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[15] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.