Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (4): 92-100    DOI: 10.13523/j.cb.2210013
    
Regulation Role of Light-controlled Expression Systems in Synthetic Biology
LIU Ting-ting,ZHANG Ping,ZHANG Yue()
College of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
Download: HTML   PDF(992KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Optogenetics is a new technology that combines genetics technology and light control technology to control biological processes with light. Based on the strategy of combining optogenetics and synthetic biology methods, researchers combined light as a sensing module with existing gene modules in organisms to form a new gene circuit, and designed a system that can dynamically regulate gene expression through light signals. As a new type of dynamic regulation switch with low cost, low toxicity and high flexibility, it has not only been applied in disease diagnosis, material synthesis and other fields, but also greatly promoted the progress of microbial metabolism and helped solve energy shortage problems. Since photoreceptors are indispensable components in optogenetics technology, this paper introduce several light-regulated systems used to control gene expression according to the photosensitive properties of different photoreceptors, and focus on their applications in regulating microbial system gene expression, metabolic pathways and drug delivery. Meanwhile, the potential problems and prospects of the application of photogenetics in synthetic biology were also discussed.



Key wordsOptogenetics      Synthetic biology      Dynamic regulation      Photoreceptors     
Received: 11 October 2022      Published: 04 May 2023
ZTFLH:  Q819  
Cite this article:

LIU Ting-ting, ZHANG Ping, ZHANG Yue. Regulation Role of Light-controlled Expression Systems in Synthetic Biology. China Biotechnology, 2023, 43(4): 92-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210013     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I4/92

Fig.1 Red light-regulated system PHYB and PIF3 light activation mechanism
Fig.2 Blue light-regulated system CRY2 and CIB1 light activation mechanism
Fig.3 Blue light-regulated system LOV2 light activation mechanism
Fig.4 UVR light-regulated system COP1 and UVR8 light activation mechanism
Fig.5 Green light-regulated system CarH and CarO light activation mechanisms
光源类型 光受体来源 系统组分 宿主 诱导倍数/产量 参考文献
红光、远红光 拟南芥 PHYB/PIF3 酿酒酵母 >1 000倍 [5]
红光、远红光 拟南芥 PhyB-synTALE-DBD/
PIF3-VP64AD
酿酒酵母 PhiReX1.0: 11倍, PhiReX1.1:41倍 [40]
红光、远红光 拟南芥 PHYB/PIF3 大肠杆菌 5倍 [41]
蓝光 拟南芥 CRY2/CIB1 酿酒酵母 120倍 [22]
蓝光 拟南芥 CRY2/CIB1 酿酒酵母 5倍 [42]
蓝光 燕麦 AsLOV2 酿酒酵母 5倍 [43]
蓝光 粗糙脉孢菌 LightOn 小鼠 200~300倍 [44]
蓝光 山葡萄红杆菌 EL222 酿酒酵母 (8.49 ± 0.31)g/L [45]
紫外光 拟南芥 UVR8/COP1 酿酒酵母 80倍 [46]
绿光 嗜热栖热菌 CarH/VPRH 解脂耶氏酵母 绿光及黑暗条件下分别为
99.1 mg/L、117.1mg/L
[47]
Table 1 Application of light modulation systems
[1]   Keyes W M, Mills A A. Inducible systems see the light. Trends in Biotechnology, 2003, 21(2): 53-55.
pmid: 12573850
[2]   Toettcher J E, Voigt C A, Weiner O D, et al. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nature Methods, 2011, 8(1): 35-38.
doi: 10.1038/nmeth.f.326 pmid: 21191370
[3]   冯秀英. 光敏蛋白vivid的性质研究和应用. 上海: 华东理工大学, 2011.
[3]   Feng X Y. The properties research and application of the photoreceptor protein vivid. Shanghai: East China University of Science and Technology, 2011.
[4]   罗月. 光控基因表达调控系统的构建及其在代谢工程中的应用. 济南: 山东大学, 2021.
[4]   Luo Y. Construction of light-controlled gene expression regulation system and its application in metabolic engineering. Jinan: Shandong University, 2021.
[5]   Shimizu-Sato S, Huq E, Tepperman J M, et al. A light-switchable gene promoter system. Nature Biotechnology, 2002, 20(10): 1041-1044.
pmid: 12219076
[6]   Davis S J, Vener A V, Vierstra R D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 1999, 286(5449): 2517-2520.
pmid: 10617469
[7]   Auldridge M E, Forest K T. Bacterial phytochromes: more than meets the light. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46(1): 67-88.
doi: 10.3109/10409238.2010.546389 pmid: 21250783
[8]   Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annual Review of Plant Biology, 2006, 57(1): 837-858.
doi: 10.1146/arplant.2006.57.issue-1
[9]   Wu S H, Lagarias J. Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry, 2000, 39(44): 13487-13495.
pmid: 11063585
[10]   周杨杨. 拟南芥phyA铰链区调控phyA磷酸化和功能的分子机制. 北京: 中国农业大学, 2019.
[10]   Zhou Y Y. The hinge region of Arabidopsis phyA regulates phyA phosphorylation and functions. Beijing: China Agricultural University, 2019.
[11]   Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Review of Plant Biology, 2008, 59: 281-311.
doi: 10.1146/annurev.arplant.59.032607.092859 pmid: 18257712
[12]   Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. Journal of Plant Research, 2016, 129(2): 123-135.
doi: 10.1007/s10265-016-0789-0 pmid: 26818948
[13]   Wahlgren W Y, Golonka D, Westenhoff S, et al. Cryo-electron microscopy of Arabidopsis thaliana phytochrome A in its Pr state reveals head-to-head homodimeric architecture. Frontiers in Plant Science, 2021, 12: 663751.
[14]   张芳, 张晓枫, 王进征, 等. 植物光敏色素PHYA、PHYB研究进展. 生物学通报, 2011, 46(1): 11-14.
[14]   Zhang F, Zhang X F, Wang J Z, et al. Research progress of phytochrome PHYA and PHYB. Bulletin of Biology, 2011, 46(1): 11-14.
[15]   Chen M, Tao Y, Lim J, et al. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Current Biology, 2005, 15(7): 637-642.
doi: 10.1016/j.cub.2005.02.028 pmid: 15823535
[16]   Levskaya A, Weiner O D, Lim W A, et al. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 2009, 461(7266): 997-1001.
doi: 10.1038/nature08446
[17]   Peter E, Dick B, Baeurle S A. Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa. Nature Communications, 2010, 1(1): 122.
doi: 10.1038/ncomms1121
[18]   周峰. 植物光受体的结构域与光化学特性研究进展. 广东农业科学, 2012, 39(10): 234-236.
[18]   Zhou F. Advances in domain structure and photochemistry of plant photoreceptors. Guangdong Agricultural Sciences, 2012, 39(10): 234-236.
[19]   闫海, 周波, 李玉花. 植物的隐花色素及其光信号转导. 植物生理学通讯, 2005, 41(6): 841-846.
[19]   Yan H, Zhou B, Li Y H. Plant cryptochrome and its light signal transduction. Plant Physiology Communications, 2005, 41(6): 841-846.
[20]   Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews, 2003, 103(6): 2203-2237.
pmid: 12797829
[21]   Lin C T, Shalitin D. Cryptochrome structure and signal transduction. Annual Review of Plant Biology, 2003, 54(1): 469-496.
doi: 10.1146/arplant.2003.54.issue-1
[22]   Kennedy M J, Hughes R M, Peteya L A, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods, 2010, 7(12): 973-975.
doi: 10.1038/nmeth.1524 pmid: 21037589
[23]   Liu H T, Yu X H, Li K W, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 2008, 322(5907): 1535-1539.
doi: 10.1126/science.1163927
[24]   Chia N, Lee S Y, Tong Y J. Optogenetic tools for microbial synthetic biology. Biotechnology Advances, 2022, 59: 107953.
[25]   Huang P Y, Zhao Z H, Duan L T. Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions. Neural Regeneration Research, 2022, 17(1): 25-30.
doi: 10.4103/1673-5374.314293 pmid: 34100422
[26]   Herrou J, Crosson S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nature Reviews Microbiology, 2011, 9(10): 713-723.
doi: 10.1038/nrmicro2622 pmid: 21822294
[27]   Dwijayanti A, Zhang C Q, Poh C L, et al. Toward multiplexed optogenetic circuits. Frontiers in Bioengineering and Biotechnology, 2022, 9: 804563.
[28]   Omelina E S, Yushkova A A, Motorina D M, et al. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. International Journal of Molecular Sciences, 2022, 23(3): 1737.
doi: 10.3390/ijms23031737
[29]   Tischer D, Weiner O D. Illuminating cell signalling with optogenetic tools. Nature Reviews Molecular Cell Biology, 2014, 15(8): 551-558.
doi: 10.1038/nrm3837 pmid: 25027655
[30]   Renicke C, Schuster D, Usherenko S, et al. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chemistry & Biology, 2013, 20(4): 619-626.
doi: 10.1016/j.chembiol.2013.03.005
[31]   Zoltowski B D, Vaccaro B, Crane B R. Mechanism-based tuning of a LOV domain photoreceptor. Nature Chemical Biology, 2009, 5(11): 827-834.
doi: 10.1038/nchembio.210 pmid: 19718042
[32]   Fraikin G Y, Strakhovskaya M G, Belenikina N S, et al. Bacterial photosensory proteins: regulatory functions and optogenetic applications. Microbiology, 2015, 84(4): 461-472.
doi: 10.1134/S0026261715040086
[33]   Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochemical & Photobiological Sciences, 2022, 21(4): 493-507.
[34]   Gardner K H, Correa F. How plants see the invisible. Science, 2012, 335(6075): 1451-1452.
doi: 10.1126/science.1220248 pmid: 22442470
[35]   陈慧泽, 牛靖蓉, 韩榕. 植物紫外光B受体UVR8的信号转导途径. 植物生理学报, 2021, 57(6): 1179-1188.
[35]   Chen H Z, Niu J R, Han R. Signal transduction pathways of plant ultraviolet B receptor UVR8. Plant Physiology Journal, 2021, 57(6): 1179-1188.
[36]   Figueroa D, Rojas V, Romero A, et al. The rise and shine of yeast optogenetics. Yeast, 2021, 38(2): 131-146.
doi: 10.1002/yea.v38.2
[37]   Padmanabhan S, Jost M, Drennan C L, et al. A new facet of vitamin B12: gene regulation by cobalamin-based photoreceptors. Annual Review of Biochemistry, 2017, 86: 485-514.
doi: 10.1146/annurev-biochem-061516-044500 pmid: 28654327
[38]   Jost M, Fernández-Zapata J, Polanco M C, et al. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature, 2015, 526(7574): 536-541.
doi: 10.1038/nature14950
[39]   Chatelle C, Ochoa-Fernandez R, Engesser R, et al. A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synthetic Biology, 2018, 7(5): 1349-1358.
doi: 10.1021/acssynbio.7b00450 pmid: 29634242
[40]   Hochrein L, Machens F, Messerschmidt K, et al. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Research, 2017, 45(15): 9193-9205.
doi: 10.1093/nar/gkx610 pmid: 28911120
[41]   Raghavan A R, Salim K, Yadav V G. Optogenetic control of heterologous metabolism in E. coli. ACS Synthetic Biology, 2020, 9(9): 2291-2300.
doi: 10.1021/acssynbio.9b00454 pmid: 32786352
[42]   Taslimi A, Zoltowski B, Miranda J G, et al. Optimized second-generation CRY2-CIB dimerizers and photoactivatable cre recombinase. Nature Chemical Biology, 2016, 12(6): 425-430.
doi: 10.1038/nchembio.2063 pmid: 27065233
[43]   Da Silva N A, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12(2): 197-214.
doi: 10.1111/j.1567-1364.2011.00769.x
[44]   Wang X, Chen X J, Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nature Methods, 2012, 9(3): 266-269.
doi: 10.1038/nmeth.1892 pmid: 22327833
[45]   Zhao E M, Zhang Y F, Mehl J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 2018, 555(7698): 683-687.
doi: 10.1038/nature26141
[46]   Crefcoeur R P, Yin R H, Ulm R, et al. Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nature Communications, 2013, 4(1): 1779.
doi: 10.1038/ncomms2800
[47]   张萍, 魏文平, 周英, 等. 解脂耶氏酵母中光控表达系统的构建及其应用研究. 合成生物学, 2021, 2(5): 778-791.
doi: 10.12211/2096-8280.2021-018
[47]   Zhang P, Wei W P, Zhou Y, et al. Construction of a light-controlled expression system and its application in Yarrowia lipolytica. Synthetic Biology Journal, 2021, 2(5): 778-791.
doi: 10.12211/2096-8280.2021-018
[48]   Yen S T, Trimmer K A, Aboul-Fettouh N, et al. CreLite: an optogenetically controlled Cre/loxP system using red light. Developmental Dynamics, 2020, 249(11): 1394-1403.
doi: 10.1002/dvdy.v249.11
[49]   Fernandez-Rodriguez J, Moser F, Song M, et al. Engineering RGB color vision into Escherichia coli. Nature Chemical Biology, 2017, 13(7): 706-708.
doi: 10.1038/nchembio.2390 pmid: 28530708
[50]   Zhou Y, Kong D Q, Wang X Y, et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nature Biotechnology, 2022, 40(2): 262-272.
doi: 10.1038/s41587-021-01036-w
[51]   Hou X Y, Shou C T, He M Y, et al. A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy. Acta Pharmaceutica Sinica B, 2020, 10(9): 1741-1753.
doi: 10.1016/j.apsb.2020.04.010 pmid: 33088693
[52]   Magaraci M S, Veerakumar A, Qiao P, et al. Engineering Escherichia coli for light-activated cytolysis of mammalian cells. ACS Synthetic Biology, 2014, 3(12): 944-948.
doi: 10.1021/sb400174s pmid: 24933444
[1] NING Jun-tao, ZOU Shi-shi, ZUO Kun-lan, WU Zong-zhen, Li Jing, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Active Substance in Synthesis Biology[J]. China Biotechnology, 2023, 43(2/3): 180-189.
[2] YANG Yang, YAO Ming-dong, WANG Ying, XIAO Wen-hai. Research Progress of Synthesis of 2'-Fucosyllactose by Yeast[J]. China Biotechnology, 2023, 43(1): 127-138.
[3] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[4] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[5] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[6] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[7] ZHAO Chi-hong,SU Dan-dan,LI Chun,WU Zong-zhen,ZUO Kun-lan,XU Yan-long,LIU Huan. Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept[J]. China Biotechnology, 2022, 42(12): 120-128.
[8] Chun-li HAN,Han-jie WANG. Advances of Engineered Live Biotherapeutics in Tumor Immunotherapy[J]. China Biotechnology, 2022, 42(10): 39-50.
[9] Hui-min LI,Bin JIA,Xia LI,Duo LIU. Advances in Engineering Yeast Chassis for Producing Aromatic Compounds[J]. China Biotechnology, 2022, 42(10): 80-92.
[10] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[11] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[12] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[13] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[14] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[15] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.