Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (8): 1-12    DOI: 10.13523/j.cb.2205010
    
Molecular Simulation-based Continuous Optimization of Nucleic-acid Aptamers Against Tetrodotoxin
YAN Zhi-chao,SONG Meng-hua,LIU Jian-ping,HUANG Qiang**()
School of Life Sciences, Fudan University, Shanghai 200438, China
Download: HTML   PDF(5607KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tetrodotoxin (TTX) is an alkaloid neurotoxin, and its poisoning cases occurr worldwide and therefore seriously threat human health. However, there is no specific antidote yet for TTX, so the detection of TTX is of great importance in the field of food safety. To obtain a more efficient TTX recognition element, guided by molecular simulations, a DNA aptamer (TTX-27) previously discovered by SELEX screening was continuously optimized. First, the stem-loop structure, which hinders the TTX binding, was replaced with a mini-hairpin structure to make the TTX bind more easily to the truncated aptamer; next, T39 and C40 bases were mutated to C and T bases, respectively, and C39 was also modified with 2'-OH to enhance the hydrogen bonding and van der Waals interactions of the bases with TTX. Microscale thermophoresis (MST) experiments confirmed that the affinities of the aptamer variants were increased by the truncation, base mutation and chemical modification. The dissociation equilibrium constant Kd of the binding of the chemically modified variant TTX-D2-X-R to TTX was 1.08 nmol/L, which increased 75.5 times compared to that of TTX-27. Thus, this study demonstrates that the molecular simulation-based truncation-mutation-chemical modification is an effective approach to the post-SELEX optimization of nucleic-acid aptamers, and the resulting aptamer variant TTX-D2-X-R has potential applications in the field of TTX detection.



Key wordsTetrodotoxin      Aptamer      Molecular simulation      Base truncation      Base mutation      Chemical modification     
Received: 05 May 2022      Published: 07 September 2022
ZTFLH:  Q81  
Corresponding Authors: Qiang HUANG     E-mail: huangqiang@fudan.edu.cn
Cite this article:

YAN Zhi-chao,SONG Meng-hua,LIU Jian-ping,HUANG Qiang. Molecular Simulation-based Continuous Optimization of Nucleic-acid Aptamers Against Tetrodotoxin. China Biotechnology, 2022, 42(8): 1-12.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2205010     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I8/1

Fig.1 2D structure(a) and 3D structure(b) of TTX-27 Cyan: G4-C24 bases; Pink: Binding region bases; Earthy yellow: T47-C67 bases
名称 碱基序列(5'-3') 碱基数
TTX-27 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA 80
TTX-D2 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACCGAAAGCGGTCTACCTCTTGA 67
TTX-D2-X ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTCTATAGACCGAAAGCGGTCTACCTCTTGA 67
TTX-D2-X-R ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTr(C)TATAGACCGAAAGCGGTCTACCTCTTGA 67
Table 1 Sequences of nucleic acid aptamers.
Fig.2 MD RMSDs of the TTX-27∶TTX complex(a) and spontaneous association of TTX with TTX-27(b) Blue: G4-C24 bases; Yellow: T47-C67 bases; Green: The bases not directly associated with TTX binding; Red: The bases associated with TTX binding
Fig.3 Residue-based interactions of TTX-27 before and after the truncation optimization (a) TTX-27 (b) TTX-D2 Light: Van der Waals interaction probabilities of aptamer bases with TTX; Dark: Average H-bond numbers between TTX and the bases
名称 碱基序列(5'-3') 结合自由能
ΔG/(kcal/mol)
TTX-27 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA -14.94
TTX-5S ATAGGAGTGCTCCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA -16.12
TTX-3S ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTTCATAGACTGTGCGTCTACCTCTTGA -15.21
TTX-D1 ATAGCGAAAGCGCATTTATTCTAAATTTCATAGACTAGTTAATAATAACTATGTGCGTCTACCTCTTGA -15.89
TTX-D2 ATAGGAGTCACGACGACCAGCTCCATTTATTCTAAATTCTATAGACCGAAAGCGGTCTACCTCTTGA -17.72
Table 2 Docking binding free energies of TTX-27 variants
Fig.4 Analysis of MD and MST experiments for TTX-27 and its variants (a) RMSDs of the TTX-D2∶TTX complex (b) Time-dependent distances of TTX to TTX-27 and TTX-D2 binding regions (c) Comparison of binding free energies of TTX-27∶TTX and TTX-D2∶TTX (d) MST experiments for four nucleic acid aptamers. TTX-27∶ Kd =(81.52 ± 0.28) nmol/L; TTX-D2: Kd =(38.14 ± 0.23) nmol/L; TTX-D2-X: Kd =(12.36 ± 0.48) nmol/L; TTX-D2-X-R: Kd =(1.08 ± 0.64) nmol/L, determined by the average of 4 independent measurements, average ± S.E.
原有
碱基
突变
碱基
一轮突变
ΔG /(kcal/mol)
二轮突变
ΔG/(kcal/mol)
三轮突变
ΔG/(kcal/mol)
T38 A -6.36 -8.07 -7.25
G -5.11 * *
C * * *
T39 A -6.69 -7.78 C
G -5.11 -7.37
C -7.77 -8.75
C40 A -6.90 T T
G -8.05
T -8.20
C61 A * * *
G -6.49 -6.97 *
T * * *
T62 A -7.62 -7.65 -7.14
G -7.05 -7.52 -7.35
C -7.34 -7.16 -6.74
C63 A -5.94 -7.83 -8.69
G -7.13 -7.94 -6.42
T * * -6.95
Table 3 Binding free energies of multiple rounds of mutations
Fig.5 Residue-based interactions of TTX-D2-X before and after chemical modification (a) TTX-D2-X (b) TTX-D2-X-R Light: Van der Waals interaction probability of aptamer bases with TTX; Dark: Average H-bond numbers between TTX and the bases
碱基名称 距离/Å
C39 3.4
A41 7.1
C60 7.2
C61 6.3
C63 3.7
Table 4 The distances from the base deoxyribose C-2 of the binding region to TTX
Fig.6 Intermolecular interaction of TTX-27 with TTX before and after continuous optimization (a) TTX-27 (b) TTX-D2-X-R
[1]   Lin S J, Hwang D F. Possible source of tetrodotoxin in the starfish Astropecten scoparius. Toxicon, 2001, 39(4): 573-579.
pmid: 11024497
[2]   Asakawa, Matsumoto, Umezaki, et al. Toxicity and toxin composition of the greater blue-ringed Octopus Hapalochlaena lunulata from ishigaki island, Okinawa prefecture, Japan. Toxins, 2019, 11(5): 245.
doi: 10.3390/toxins11050245
[3]   Mosher H S, Fuhrman F A, Buchwald H D, et al. Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science, 1964, 144(3622): 1100-1110.
doi: 10.1126/science.144.3622.1100
[4]   Kim Y H, Brown G B, Mosher F A. Tetrodotoxin: occurrence in atelopid frogs of Costa rica. Science, 1975, 189(4197): 151-152.
pmid: 1138374
[5]   Shen H Z, Li Z Q, Jiang Y, et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science, 2018, 362(6412): eaau2596.
doi: 10.1126/science.aau2596
[6]   Abal P, Louzao M C, Antelo A, et al. Acute oral toxicity of tetrodotoxin in mice: determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins, 2017, 9(3): 75.
doi: 10.3390/toxins9030075
[7]   Hungerford J M. Committee on natural toxins and food allergens: marine and freshwater toxins. Journal of AOAC INTERNATIONAL, 2019, 89(1): 248-269.
doi: 10.1093/jaoac/89.1.248
[8]   Chen L, Qiu J L, Tang Y J, et al. Rapid in vivo determination of tetrodotoxin in pufferfish (Fugu) muscle by solid-phase microextraction coupled to high-performance liquid chromatography tandem mass spectrometry. Talanta, 2017, 171: 179-184.
doi: S0039-9140(17)30505-2 pmid: 28551126
[9]   Reverté L, Rambla-Alegre M, Leonardo S, et al. Development and validation of a maleimide-based enzyme-linked immunosorbent assay for the detection of tetrodotoxin in oysters and mussels. Talanta, 2018, 176: 659-666.
doi: S0039-9140(17)30861-5 pmid: 28917804
[10]   Campàs M, Reverté J, Rambla-Alegre M, et al. A fast magnetic bead-based colorimetric immunoassay for the detection of tetrodotoxins in shellfish. Food and Chemical Toxicology, 2020, 140: 111315.
doi: 10.1016/j.fct.2020.111315
[11]   Zhang M, Wang Y, Wu P, et al. Development of a highly sensitive detection method for TTX based on a magnetic bead-aptamer competition system under triple cycle amplification. Analytica Chimica Acta, 2020, 1119: 18-24.
doi: S0003-2670(20)30469-4 pmid: 32439050
[12]   Lan Y F, Qin G J, Wei Y L, et al. Highly sensitive analysis of tetrodotoxin based on free-label fluorescence aptamer sensing system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 411-418.
doi: 10.1016/j.saa.2019.04.068
[13]   Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510.
pmid: 2200121
[14]   Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.
doi: 10.1038/346818a0
[15]   邵碧英, 陈彬, 陈文炳, 等. 河豚毒素DNA适配子的制备及应用. 食品科学, 2014, 35(24): 205-208.
[15]   Shao B Y, Chen B, Chen W B, et al. Preparation and application of tetrodotoxin DNA aptamer. Food Science, 2014, 35(24): 205-208.
[16]   邵碧英, 高兴, 杨方, 等. 河豚毒素DNA适配子的筛选与结构分析. 中国食品学报, 2012, 12(2): 137-143.
[16]   Shao B Y, Gao X, Yang F, et al. Screening and structure analysis of the aptamer against tetrodotoxin. Journal of Chinese Institute of Food Science and Technology, 2012, 12(2): 137-143.
[17]   Gu H J, Duan N, Xia Y, et al. Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9801-9809.
doi: 10.1021/acs.jafc.8b02771
[18]   Shkembi X, Skouridou V, Svobodova M, et al. Hybrid antibody-aptamer assay for detection of tetrodotoxin in pufferfish. Analytical Chemistry, 2021, 93(44): 14810-14819.
doi: 10.1021/acs.analchem.1c03671
[19]   Cowperthwaite M C, Ellington A D. Bioinformatic analysis of the contribution of primer sequences to aptamer structures. Journal of Molecular Evolution, 2008, 67(1): 95-102.
doi: 10.1007/s00239-008-9130-4 pmid: 18594898
[20]   Xu G H, Zhao J J, Liu N, et al. Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Research, 2019, 47(11): 5963-5972.
doi: 10.1093/nar/gkz336
[21]   Peng C G, Damha M J. G-quadruplex induced stabilization by 2'-deoxy-2'-fluoro-d-arabinonucleic acids (2'F-ANA). Nucleic Acids Research, 2007, 35(15): 4977-4988.
doi: 10.1093/nar/gkm520
[22]   Song M H, Li G, Zhang Q, et al. De novo post-SELEX optimization of a G-quadruplex DNA aptamer binding to marine toxin gonyautoxin 1/4. Computational and Structural Biotechnology Journal, 2020, 18: 3425-3433.
doi: 10.1016/j.csbj.2020.10.041
[23]   Zheng X, Hu B, Gao S X, et al. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon, 2015, 101: 41-47.
doi: 10.1016/j.toxicon.2015.04.017 pmid: 25937337
[24]   Khoshbin Z, Housaindokht M R. Computer-aided aptamer design for sulfadimethoxine antibiotic: step by step mutation based on MD simulation approach. Journal of Biomolecular Structure & Dynamics, 2021, 39(9): 3071-3079.
[25]   Reuter J S, Mathews D H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 2010, 11: 129.
doi: 10.1186/1471-2105-11-129
[26]   Yesselman J D, Das R. Modeling small noncanonical RNA motifs with the Rosetta FARFAR server. Methods in Molecular Biology (Clifton, N J), 2016, 1490: 187-198.
[27]   Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, 30(16): 2785-2791.
doi: 10.1002/jcc.21256
[28]   Bitencourt-Ferreira G, Pintro V O, de Azevedo W F Jr. Docking with autodock4. Methods in Molecular Biology. New York: Springer New York, 2019: 125-148.
[29]   Liu Q, Herrmann A, Huang Q. Surface binding energy landscapes affect phosphodiesterase isoform-specific inhibitor selectivity. Computational and Structural Biotechnology Journal, 2019, 17: 101-109.
doi: 10.1016/j.csbj.2018.11.009
[30]   Wang J M, Wang W, Kollman P A, et al. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 2006, 25(2): 247-260.
doi: 10.1016/j.jmgm.2005.12.005
[31]   Wang J M, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157-1174.
doi: 10.1002/jcc.20035
[32]   Sousa da Silva A W, Vranken W F. ACPYPE - AnteChamber PYthon parser interface. BMC Research Notes, 2012, 5: 367.
doi: 10.1186/1756-0500-5-367 pmid: 22824207
[33]   Abraham M J, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2: 19-25.
[34]   Lindahl V, Villa A, Hess B. Sequence dependency of canonical base pair opening in the DNA double helix. PLoS Computational Biology, 2017, 13(4): e1005463.
doi: 10.1371/journal.pcbi.1005463
[35]   Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
doi: 10.1063/1.464397
[36]   Hess B, Bekker H, Berendsen H J C, et al. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[37]   Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984, 81(8): 3684-3690.
doi: 10.1063/1.448118
[38]   Hirao I, Kimoto M, Lee K H. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie, 2018, 145: 15-21.
doi: 10.1016/j.biochi.2017.09.007
[39]   Wakita M, Kotani N, Akaike N. Tetrodotoxin abruptly blocks excitatory neurotransmission in mammalian CNS. Toxicon, 2015, 103: 12-18.
doi: 10.1016/j.toxicon.2015.05.003
[1] Zhi-xin YAO,Wan-ming LI. Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer[J]. China Biotechnology, 2022, 42(7): 62-68.
[2] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[3] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[4] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[5] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[6] HE Min-yu, RAN Hai-tao. Aptamer Conjugated Nanomaterials for Targeted Cancer Therapeutics[J]. China Biotechnology, 2015, 35(4): 86-91.
[7] TANG De-ping, MAO Ai-hong, WANG Fang, ZHANG Hong, WANG Li, LIAO Shi-qi. Targeted Delivery of siRNA Mediated by Aptamer Modified Liposome[J]. China Biotechnology, 2015, 35(1): 54-60.
[8] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[9] ZHOU Ni, CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of An Electrochemical Aptasensor Basic on the ssDNA Aptamer of Ractopamine[J]. China Biotechnology, 2014, 34(1): 42-49.
[10] CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of an Aptasensor for Electrochemical Detection of Tetracycline[J]. China Biotechnology, 2013, 33(11): 56-62.
[11] ZHU Yi-ran, FAN Xue-rong, WANG Qiang, CHEN Ren-ren, YU Yuan-yuan, YUAN Jiu-gang. Chemical Modification of Savinase by Dextran and Its Enzyme Properties[J]. China Biotechnology, 2011, 31(10): 45-49.
[12] WANG Xu-Dong, LI Xiao-Hui, SU Zhi-Guo, XIU Zhi-Long. Site-specific PEGylation Strategies and Suitable Modified Sites of Protein Drugs[J]. China Biotechnology, 2010, 30(04): 101-109.
[13] . Study on General Properties of PEGylated Recombinant Uricase[J]. China Biotechnology, 2009, 29(11): 23-28.
[14] LI Zhi-Hua- Hu-Man-Cang- Yan-Ling-Mei- Diao-Yu-Jiao- Yang-Xu- Bang-Zheng-Hua- Xu-Wei-Meng- Li-Jian-Feng. Site-specific PEGylation of engineered cysteine analogues of recombinant human interleukin-11[J]. China Biotechnology, 2009, 29(06): 20-24.
[15] 覃益民 QIN Yi-Min Jiang-tao TANG Yuan-an WEI Ping-Jia YAO Jin-tian Liang. CHEMICAL MODIFICATION AND ACTIVE SITES OF β-FRUCTOSYL-TRANSFERASE FROM Aspergillus oryzae GX0011[J]. China Biotechnology, 2008, 28(6): 84-88.