Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (7): 62-68    DOI: 10.13523/j.cb.2202034
    
Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer
Zhi-xin YAO1,Wan-ming LI2,**()
1. School of Life Sciences, China Medical University, Shenyang 110122, China
2. Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang 110122, China
Download: HTML   PDF(663KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Breast cancer is a common malignant tumor mostly occurring in women. Triple-negative breast cancer (TNBC) is highly malignant and has a complex pathogenesis, which is the worst prognosis type of breast cancer classification. However, the sensitivity of its early screening and diagnosis is still at a low level. Therefore, it is urgent to achieve its early diagnosis and treatment by applying highly specific molecular probes for detection of tumor markers. Aptamer is a class of oligonucleotide screened by SELEX (systematic evolution of ligands by exponential enrichment) technology in a synthetic library of random single-chain nucleic acid sequences. With efficient molecular recognition ability, it has become the most potential bio-targeting molecule and has a wide application prospect in tumor diagnosis and treatment. Currently, several aptamers targeting TNBC cells have been obtained by screening. Here, the new progress of screening TNBC related aptamers based on SELEX and its derivatives, as well as the application of aptamers in the diagnosis and treatment of TNBC are reviewed, to provide a reference for related research.



Key wordsTriple-negative breast cancer(TNBC)      Aptamers      SELEX      Cancer diagnosis      Cancer therapy     
Received: 21 February 2022      Published: 03 August 2022
ZTFLH:  R737.9  
Corresponding Authors: Wan-ming LI     E-mail: wmli@cmu.edu.cn
Cite this article:

Zhi-xin YAO,Wan-ming LI. Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer. China Biotechnology, 2022, 42(7): 62-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2202034     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I7/62

适配体 靶标 SELEX方法 正向筛选 反向筛选 参考文献
CL4 EGFR Cell-SELEX A549细胞 H460细胞 [18]
Gint4.T PDGFRβ Cell-SELEX U87MG细胞 [19]
MUC1 Mucin-1 蛋白-SELEX Mucin-1 [22]
AS1411 Nucleolin 非SELEX技术 [25]
XQ-P3 PD-L1 Cell-SELEX MDA-MB-231 PD-L1过表达细胞 MDA-MB-231 PD-L1敲除细胞 [27]
M3 未知 Cell-SELEX MDA-MB-231细胞 MCF-7细胞 [28]
PDGC21-T CD49c Cell-SELEX BGC-823细胞 SGC-7901细胞 [30-31]
Table 1 Aptamers associated with triple-negative breast cancer
Fig.1 Applications of aptamers in TNBC
[1]   Bryan B B, Schnitt S J, Collins L C. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Modern pathology, 2006, 19(5): 617-621.
doi: 10.1038/modpathol.3800570
[2]   Kuang H H, Schneiderman Z, Shabana A M, et al. Effect of an alkyl spacer on the morphology and internalization of MUC 1 aptamer-naphthalimide amphiphiles for targeting and imaging triple negative breast cancer cells. Bioengineering & Translational Medicine, 2020, 6(1): e10194.
[3]   Camorani S, Fedele M, Zannetti A, et al. TNBC challenge: oligonucleotide aptamers for new imaging and therapy modalities. Pharmaceuticals (Basel, Switzerland), 2018, 11(4): 123.
[4]   Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.
doi: 10.1038/346818a0
[5]   Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510.
pmid: 2200121
[6]   Morris K N, Jensen K B, Julin C M, et al. High affinity ligands from in vitro selection: complex targets. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(6): 2902-2907.
[7]   Rajendran M, Ellington A D. In vitro selection of molecular beacons. Nucleic Acids Research, 2003, 31(19): 5700-5713.
pmid: 14500834
[8]   Li S H, Xu H, Ding H M, et al. Identification of an aptamer targeting hnRNP A 1 by tissue slide-based SELEX. The Journal of Pathology, 2009, 218(3): 327-336.
doi: 10.1002/path.2543
[9]   Mendonsa S D, Bowser M T. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry, 2004, 76(18): 5387-5392.
pmid: 15362896
[10]   Hicke B J, Marion C, Chang Y F, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry, 2001, 276(52): 48644-48654.
doi: 10.1074/jbc.M104651200 pmid: 11590140
[11]   Chen F, Zeng J, Sun P, et al. Selection and identification of DNA aptamers against DC-SIGN. Chinese Journal of Cellular and Molecular Immunology, 2008, 24(12): 1133-1136.
[12]   Mayer G, Ahmed M S L, Dolf A, et al. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nature Protocols, 2010, 5(12): 1993-2004.
doi: 10.1038/nprot.2010.163
[13]   Nelissen F H T, Peeters W J M, Roelofs T P, et al. Improving breast cancer treatment specificity using aptamers obtained by 3D cell-SELEX. Pharmaceuticals (Basel, Switzerland), 2021, 14(4): 349.
[14]   Ha S J, Park J H, Lee B B, et al. Label-free direct detection of saxitoxin based on a localized surface plasmon resonance aptasensor. Toxins, 2019, 11(5): 274.
doi: 10.3390/toxins11050274
[15]   D’Ippolito E, Plantamura I, Bongiovanni L, et al. miR-9 and miR-200 regulate PDGFRβ-mediated endothelial differentiation of tumor cells in triple-negative breast cancer. Cancer Research, 2016, 76(18): 5562-5572.
doi: 10.1158/0008-5472.CAN-16-0140
[16]   Park H S, Jang M H, Kim E J, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Modern Pathology, 2014, 27(9): 1212-1222.
doi: 10.1038/modpathol.2013.251
[17]   Camorani S, Crescenzi E, Colecchia D, et al. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget, 2015, 6(35): 37570-37587.
doi: 10.18632/oncotarget.6066 pmid: 26461476
[18]   Esposito C L, Passaro D, Longobardo I, et al. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One, 2011, 6(9): e24071.
doi: 10.1371/journal.pone.0024071
[19]   Camorani S, Esposito C L, Rienzo A, et al. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Molecular Therapy, 2014, 22(4): 828-841.
doi: 10.1038/mt.2013.300 pmid: 24566984
[20]   Camorani S, Crescenzi E, Gramanzini M, et al. Aptamer-mediated impairment of EGFR-integrin αvβ 3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers. Scientific Reports, 2017, 7: 46659.
doi: 10.1038/srep46659 pmid: 28425453
[21]   Camorani S, Hill B S, Collina F, et al. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics, 2018, 8(18): 5178-5199.
doi: 10.7150/thno.27798 pmid: 30429893
[22]   Ferreira C S M, Matthews C S, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 2006, 27(6): 289-301.
doi: 10.1159/000096085
[23]   Ferreira C S M, Papamichael K, Guilbault G, et al. DNA aptamers against the MUC 1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumours. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1039-1050.
doi: 10.1007/s00216-007-1470-1 pmid: 17694298
[24]   Luo S Y, Wang S M, Luo N, et al. The application of aptamer 5TR1 in triple negative breast cancer target therapy. Journal of Cellular Biochemistry, 2018, 119(1): 896-908.
doi: 10.1002/jcb.26254
[25]   Bates P J, Laber D A, Miller D M, et al. Discovery and development of the G-rich oligonucleotide AS 1411 as a novel treatment for cancer. Experimental and Molecular Pathology, 2009, 86(3): 151-164.
doi: 10.1016/j.yexmp.2009.01.004
[26]   Soundararajan S, Chen W W, Spicer E K, et al. The nucleolin targeting aptamer AS 1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Research, 2008, 68(7): 2358-2365.
doi: 10.1158/0008-5472.CAN-07-5723 pmid: 18381443
[27]   Wu X Q, Li F F, Li Y S, et al. A PD-L1 aptamer selected by loss-gain cell-SELEX conjugated with paclitaxel for treating triple-negative breast cancer. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2020, 26: e925583.
[28]   Li W M, Zhou L L, Zheng M, et al. Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by cell-SELEX. Molecular Therapy-Nucleic Acids, 2018, 12: 707-717.
doi: 10.1016/j.omtn.2018.07.008
[29]   Camorani S, Granata I, Collina F, et al. Novel aptamers selected on living cells for specific recognition of triple-negative breast cancer. iScience, 2020, 23(4): 100979.
doi: 10.1016/j.isci.2020.100979
[30]   Chen Z H, Zeng Z H, Wan Q Y, et al. Targeted immunotherapy of triple-negative breast cancer by aptamer-engineered NK cells. Biomaterials, 2022, 280: 121259.
doi: 10.1016/j.biomaterials.2021.121259
[31]   Li W M, Wang S, Zhou L L, et al. An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue. Talanta, 2019, 199: 634-642.
doi: 10.1016/j.talanta.2019.03.016
[32]   Wan Q Y, Zeng Z H, Qi J J, et al. Aptamer targets triple-negative breast cancer through specific binding to surface CD49c. Cancers, 2022, 14(6): 1570.
doi: 10.3390/cancers14061570
[33]   Zhang C Q, Zhao Y, Zhao N N, et al. NIRF optical/PET dual-modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye. Contrast Media & Molecular Imaging, 2018, 2018: 4979746.
[34]   Kim M W, Jeong H Y, Kang S J, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics, 2019, 9(3): 837-852.
doi: 10.7150/thno.30228
[35]   Fang K J, Wang L F, Huang H Y, et al. Construction of nucleolin-targeted lipid nanobubbles and contrast-enhanced ultrasound molecular imaging in triple-negative breast cancer. Pharmaceutical Research, 2020, 37(7): 145.
doi: 10.1007/s11095-020-02873-1
[36]   Santos do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, et al. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. International Journal of Nanomedicine, 2016, 12: 53-60.
doi: 10.2147/IJN.S118482
[37]   Tay T K Y, Tan P H. Liquid biopsy in breast cancer: a focused review. Archives of Pathology & Laboratory Medicine, 2021, 145(6): 678-686.
[38]   Li F F, Lu J, Liu J, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nature Communications, 2017, 8: 1390.
doi: 10.1038/s41467-017-01565-6
[39]   Vlodavsky I, Friedmann Y, Elkin M, et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nature Medicine, 1999, 5(7): 793-802.
pmid: 10395325
[40]   Duan T, Xu Z B, Sun F M, et al. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomedicine & Pharmacotherapy, 2019, 117: 109121.
doi: 10.1016/j.biopha.2019.109121
[41]   Agnello L, Tortorella S, d’Argenio A, et al. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. Journal of Experimental & Clinical Cancer Research: CR, 2021, 40(1): 239.
[42]   Prodeus A, Abdul-Wahid A, Fischer N W, et al. Targeting the PD-1/PD-L 1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Molecular Therapy-Nucleic Acids, 2015, 4: e237.
doi: 10.1038/mtna.2015.11
[43]   Camorani S, Passariello M, Agnello L, et al. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. Journal of Experimental & Clinical Cancer Research: CR, 2020, 39(1): 180.
[44]   Gilboa-Geffen A, Hamar P, Le M T N, et al. Gene knockdown by EpCAM aptamer-siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells. Molecular Cancer Therapeutics, 2015, 14(10): 2279-2291.
doi: 10.1158/1535-7163.MCT-15-0201-T pmid: 26264278
[45]   Liu H R, Mai J H, Shen J L, et al. A novel DNA aptamer for dual targeting of polymorphonuclear myeloid-derived suppressor cells and tumor cells. Theranostics, 2018, 8(1): 31-44.
doi: 10.7150/thno.21342
[1] JING Yuan-ya, CHEN Ping, CHANG Jian-feng, CHEN Su. Autophagy and Cancer[J]. China Biotechnology, 2015, 35(11): 70-76.
[2] BANG Lei, TUN Dan, HUANG Bo, LIU Xiao-Di, GUO Li-Hong. Preliminary Screening of ComE Binding Sequences in Streptococcus mutans[J]. China Biotechnology, 2010, 30(05): 27-35.
[3] . Advances in methodology for aptamer selection[J]. China Biotechnology, 2008, 28(1): 113-118.