Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 96-104    DOI: 10.13523/j.cb.20191111
    
Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers
SU Yi,JIANG Ling-li,LIN Jun-sheng()
School of Medicine, HuaQiao University, Quanzhou 362021, China
Download: HTML   PDF(473KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aptamers are single-stranded DNA or RNA who bind to their targets with high specificity and affinity obtained by selection from a library through SELEX. At present, there are only a few aptamers with high affinity and high specificity to low molecular weight targets all over the world. The aptamers against low molecular weight targets are difficult to be screened. Moreover, it is difficult to determine the affinity of low molecular weight targets binding with their candidate aptamers. Affinity characterization is the key step to determine whether the aptamer screening is successful or not. The existing affinity characterization methods for low molecular weight targets and their corresponding aptamers are summarized, including nanogold colorimetry, isothermal drop calorimetry, surface plasmon resonance, circular dichroism, quartz crystal microbalance, microscale thermophoresis and SYBR Green I dye detection. The advantages and disadvantages of these methods and suggestions for improvement are also discussed in order to improve the efficiency of aptamer characterization.



Key wordsAptamer      Low molecular weight target      Affinity characterization     
Received: 04 April 2019      Published: 17 December 2019
ZTFLH:  Q819  
Corresponding Authors: Jun-sheng LIN     E-mail: junshenglin@hqu.edu.cn
Cite this article:

SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers. China Biotechnology, 2019, 39(11): 96-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191111     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/96

方法 基本原理 靶标案例 Kd 适用范围 优势 不足 参考文献
纳米
金法
普通比色法:纳米金聚集与分散状态颜色变化 啶虫脒 5nmol/L 靶标分子本身为无色 现象明显易制备,操作简单,耗时短 普适性不强,部分小分子靶标甚至会促进适配体更加稳定地吸附在纳米金上而出现相反的检测结果 [4]
妥布霉素 23.3nmol/L [5]
钾离子 0.42nmol/L [6]
三聚氰胺 14.9nmol/L [7]
荧光猝灭活性 赭曲霉毒素A 5nmol/L [8]
雌二醇 0.48nmol/L [9]
过氧化氢酶样活性 玉米烯酮 10ng/ml [10]
磺胺二甲氧嘧啶 10ng/ml [11]
ITC 检测靶标与适配体结合时热量变化 L-酪氨酰胺 16.8μmol/L 范围较广 精确度高,实时连续监测,可直接测得Kd 用样量较大,低通量,需专人操作 [12]
替硝唑 1nmol/L [13]
孔雀石绿 (50±20)nmol/L [14]
SPR 检测适配体与靶标结合前后光折射率变化 妥布霉素 (1.24±0.03)
nmol/L
需固定适配体或者靶标 灵敏度高,实时性号,芯片可再生 小分子检测信号低,小分子难固定、低通量 [15]
黄曲霉毒素1 0.94ng/ml [16]
氟乙酰胺 1μmol/L [17]
CD 检测适配体与靶标结合前后左旋及右旋光变化 25-羟基
维生素D3
11nmol/L 适配体与靶标结合前后结构变化明显 快速、高效反映适配体结构变化 样品制备时纯度等要求高、前处理复杂 [18]
QCM 适配体与靶标结合前后重量变化,转化为频率变化检测 茶碱 0.526μmol/L 需固定适配体或者靶标 灵敏度高、实时性强 检测易受温度、湿度和震动等环境因素影响 [19]
L -酪氨酰胺 (181±27)
μmol/L
[20]
MST 靶标与适配体在毛细管中通过温度梯度热运动,检测反应体系中荧光分布的变化 17β-雌二醇 98nmol/L 待测物分子大小不限 样品量较少、可测量天然状态下适配体与靶标之间的结合 适配体需要修饰荧光,荧光寿命短 [21]
ATP (31±3)
μmol/L
[22]
SGI SYBR Green I绿色荧光染料,检测结合前后荧光变化 ATP 23.4nmol/L 靶标无荧光 简单、易操作 检测范围小、低通量 [23]
赭曲霉毒素A (370±250)
nmol/L
[24]
四环素 0.10μg/ml [25]
呋喃酮 (1.1±0.4)
μmol/L
[26]
Table 1 Summary of affinity detection methods for small molecular targets and their aptamers
[1]   Zhou N D, Wang J Y, Zhang J , et al. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta, 2013,108(8):109-116.
doi: 10.1016/j.talanta.2013.01.064 pmid: 23601877
[2]   Ilgu M, Nilsenhamilton M . Aptamers in analytics. Analyst, 2016,141(5):1551.
doi: 10.1039/c5an01824b pmid: 26864075
[3]   Xu S M, Yuan H, Chen S P , et al. Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis. Analytical Biochemistry, 2012,423(2):195-201.
doi: 10.1016/j.ab.2012.01.026
[4]   Shi H J, Zhao G H, Liu M C , et al. Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. Journal of Hazardous Materials, 2013,260(18):754-761.
doi: 10.1016/j.jhazmat.2013.06.031 pmid: 23846126
[5]   Ma Q, Wang Y X, Jia J , et al. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chemistry, 2018,249:98-103.
doi: 10.1016/j.foodchem.2018.01.022 pmid: 29407938
[6]   Chen Z B, Guo J X, Ma He , et al. A simple colorimetric sensor for potassium ion based on DNA G-quadruplex conformation and salt-induced gold nanoparticles aggregation. Analytical Methods, 2014,6(19):8018-8021.
doi: 10.1039/c4ay01025f
[7]   Hu X R, Chang K K, Wang S , et al. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. PLoS One, 2018,13(8):e0201626.
doi: 10.1371/journal.pone.0201626 pmid: 30071096
[8]   Lv L, Jin Y D, Kang X J , et al. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer. Analytical Letters, 2018,25(8):1447-1451.
doi: 10.1016/j.foodchem.2017.12.087 pmid: 29407930
[9]   Ni X, Xia B, Wang L M , et al. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of rhodamine B. Analytical Biochemistry, 2017,523 : 17-23.
doi: 10.1016/j.ab.2017.01.021 pmid: 28137603
[10]   Sun S M, Zhao R, Feng S M , et al. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchimica Acta, 2018,185:535.
doi: 10.1007/s00604-018-3078-x pmid: 30406298
[11]   Yan J, Huang Y F, Zhang C H , et al. Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition and reactivation of the peroxidase-like activity of gold nanoparticles. Microchimica Acta, 2017,184(1):59-63.
doi: 10.1007/s00604-016-1994-1
[12]   Lin P H, Yen S L, Lin M S , et al. Microcalorimetrics studies of the thermodynamics and binding mechanism between\r, l\r, -tyrosinamide and aptamer. The Journal of Physical Chemistry B, 2008,112(21):6665-6673.
doi: 10.1021/jp8000866 pmid: 18457441
[13]   Nguyen V T, Kwon Y S, Kim J H , et al. Multiple GO-SELEX for efficient screening of flexible aptamers. Chemical Communications, 2014,50(72):10513-10516.
doi: 10.1039/c4cc03953j
[14]   Sokoloski J E, Dombrowski S E, Bevilacqua P C . Thermodynamics of ligand binding to a heterogeneous RNA population in the malachite green aptamer. Biochemistry, 2012,51(1):565-572.
doi: 10.1021/bi201642p
[15]   González-Fernández E , D-e-Los-Santos-álvarez N, Miranda-Ordieres A J, et al. SPR evaluation of binding kinetics and affinity study of modified RNA aptamers towards small molecules. Talanta, 2012,99(5):767-773.
doi: 10.1016/j.talanta.2012.07.019 pmid: 22967622
[16]   Wu W B, Zhu Z L, Li B J , et al. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon, 2018,146:24-30.
doi: 10.1016/j.toxicon.2018.03.006 pmid: 29567102
[17]   Cao F Q, Lu X W, Hu X L , et al. In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Journal of the Agricultural Chemical Society of Japan, 2016,80(5):10.
doi: 10.1080/09168451.2015.1136876 pmid: 26873572
[18]   Lee B H, Nguyen V T, Gu M B . Highly sensitive detection of 25-hydroxyvitaminD3 by using a target-induced displacement of aptamer. Biosensors & Bioelectronics, 2017,88:174-180.
doi: 10.3390/bios9040142 pmid: 31835623
[19]   Dong Z M, Zhao G C . A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal. The Analyst, 2013,138(8):2456.
doi: 10.1039/c3an36775d pmid: 23467569
[20]   Osypova A, Thakar D, Dejeu J , et al. Sensor based on aptamer folding to detect low-molecular weight analytes. Analytical Chemistry, 2015,87(15):7566-7574.
doi: 10.1021/acs.analchem.5b01736 pmid: 26122480
[21]   Svobodová M, Skouridou V, Botero M L , et al. The characterization and validation of 17β-estradiol binding aptamers. J Steroid Biochem Mol Biol, 2017,167:14-22.
doi: 10.1016/j.jsbmb.2016.09.018 pmid: 27669644
[22]   Entzian C, Schubert T . Mapping the binding site of an aptamer on ATP using microscale thermophoresis. Journal of Visualized Experiments Jove, 2017,119:1-9.
doi: 10.3791/55070 pmid: 28117825
[23]   Kong L, Xu J, Xu Y Y , et al. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR green I dye. Biosensors & Bioelectronics, 2013,42(1):193-197.
doi: 10.3390/bios9040142 pmid: 31835623
[24]   McKeague M, Velu R, Hill K , et al. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins, 2014,6(8):2435-2452.
doi: 10.3390/toxins6082435 pmid: 25153252
[25]   Yang C Y, Bie J X, Zhang X M , et al. A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR green I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018,202:382-388.
doi: 10.1016/j.saa.2018.05.075 pmid: 29807336
[26]   Komarova N, Andrianova M, Glukhov S , et al. Selection, characterization, and application of ssDNA aptamer against furaneol. Molecules, 2018,23(12 ): 1-15.
doi: 10.3390/molecules23123159 pmid: 30513671
[27]   Bahreyni A, Yazdianrobati R, Ramezani M , et al. Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Microchimica Acta, 2018,185(5):272.
doi: 10.1007/s00604-018-2805-7 pmid: 29705858
[28]   Lin Y H, Ren J S, Qu X G . Catalytically active nanomaterials: a promising candidate for artificial enzymes. Accounts of Chemical Research, 2014,47(4):1097-105.
doi: 10.1021/ar400250z
[29]   Mirau P A, Smith J E, Chávez J L , et al. Structured DNA aptamer interactions with gold nanoparticles. Langmuir the Acs Journal of Surfaces & Colloids, 2017,34(5):2139-2146.
doi: 10.1021/acsami.9b12422 pmid: 31729228
[30]   Slavkovic S, Altunisik M, Reinstein O , et al. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives. Bioorg Med Chem, 2015,23(10):2593-2597.
doi: 10.1016/j.bmc.2015.02.052 pmid: 25858454
[31]   Nguyen V T, Kwon Y S, Kim J H , et al. Multiple GO-SELEX for efficient screening of flexible aptamers. Chemical Communications, 2014,50(72):10513.
doi: 10.1039/c4cc03953j
[32]   Zhang Z J, Oni O, Liu J W . New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Research, 2017,45(13):7593-7601.
doi: 10.1093/nar/gkx517 pmid: 28591844
[33]   Ohsawa K, Kasamatsu T, Nagashima J , et al. Arginine-modified DNA aptamers that show enantioselective recognition of the dicarboxylic acid moiety of glutamic acid. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2008,24(1):167.
doi: 10.2116/analsci.24.167 pmid: 18187867
[34]   Sengupta A, Gavvala K, Koninti R K , et al. Role of Mg 2+ ions in flavin recognition by RNA aptamer . Journal of Photochemistry & Photobiology B Biology, 2014,140:240-248.
doi: 10.1016/j.scitotenv.2019.135772 pmid: 31838301
[35]   Kypr J, Kejnovska I, Renciuk D , et al. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research, 2009,37(6):1713-1725.
doi: 10.1093/nar/gkp026 pmid: 19190094
[36]   Bose A . Interaction of tea polyphenols with serum albumins: A fluorescence spectroscopic analysis. Journal of Luminescence, 2016,169:220-226.
doi: 10.1016/j.jlumin.2015.09.018
[37]   Liu X X, Lu Q, Chen S R , et al. Selection and identification of novel aptamers specific for clenbuterol based on ssDNA library immobilized SELEX and gold nanoparticles biosensor. Molecules, 2018,23(9):2337.
doi: 10.3390/molecules23092337 pmid: 30216975
[38]   Abraham K M, Roueinfar M, Ponce A T , et al. In vitro selection and characterization of a single-stranded DNA aptamer against the herbicide atrazine. ACS Omega, 2018,3(10):13576-13583.
doi: 10.1021/acsomega.8b01859 pmid: 30411044
[39]   Chen X J, Huang Y K, Duan N , et al. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. Journal of Agricultural & Food Chemistry, 2014,62(42):10368.
doi: 10.4014/jmb.1909.09041 pmid: 31838830
[40]   Wiedman G R, Zhao Y, Mustaev A , et al. An aptamer-based biosensor for the azole class of antifungal drugs. Msphere, 2017,2(4):e00274-17.
doi: 10.1128/mSphere.00274-17 pmid: 28861519
[41]   Kypr J, Kejnovska I, Renciuk D , et al. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research, 2009,37(6):1713-1725.
doi: 10.1093/nar/gkp026 pmid: 19190094
[42]   ?zalp V C . Acoustic quantification of ATP using a quartz crystal microbalance with dissipation. Analyst, 2011,136(23):5046-5050.
doi: 10.1039/c1an15762k
[43]   Biniuri Y, Albada B, Willner I . Probing ATP/ATP-aptamer or ATP-aptamer mutant complexes by microscale thermophoresis and molecular dynamics simulations: discovery of an ATP-aptamer sequence of superior binding properties. The Journal of Physical Chemistry, 2018,122(39):9102-9109.
doi: 10.1021/acs.jpcb.8b06802 pmid: 30188731
[44]   Li L J, Tian X, Kong X J , et al. A G-quadruplex-based label-free fluorometric aptasensor for adenosine triphosphate Detection. Analytical Sciences, 2015,31(6):469-473.
doi: 10.2116/analsci.31.469 pmid: 26063007
[45]   Yang C Y, Bie J X, Zhang X M , et al. A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I. Molecular and Biomolecular Spectroscopy, 2018,202:382-388.
doi: 10.1016/j.saa.2018.05.075 pmid: 29807336
[46]   Zhang Y, Lu T, Wang Y , et al. Selection of a DNA aptamer against zearalenone and docking analysis for highly sensitive rapid visual detection with label-free aptasensor. Journal of Agricultural & Food Chemistry, 2008,6(45):12102-12110.
doi: 10.4014/jmb.1909.09041 pmid: 31838830
[47]   Modh H, Witt M, Urmann K , et al. Aptamer-based detection of adenosine triphosphate via qPCR. Talanta, 2017,172:199-205.
doi: 10.1016/j.talanta.2017.05.037 pmid: 28602295
[48]   Liu R J, Wu H, Lv L , et al. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Microchimica Acta, 2018,185(5):254.
doi: 10.1007/s00604-018-2786-6 pmid: 29656368
[49]   Li H, Yang D B, Zhang A W , et al. Palladium nanoparticles-based fluorescence resonance energy transfer aptasensor for highly sensitive detection of aflatoxin M? in milk. Toxins, 2017,9(10):318.
doi: 10.3390/toxins9100318
[50]   Li M W, Qiu Y Y, Fan C C , et al. Design of SERS nanoprobes for Raman imaging:materials, critical factors and architectures. Acta Pharmaceutica Sinica B, 2018,8(3):381.
doi: 10.1016/j.apsb.2018.01.010 pmid: 29881677
[51]   Barhoumi A, Halas N J . Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. Journal of the American Chemical Society, 2010,132(37):12792-12793.
doi: 10.1021/ja105678z pmid: 20738091
[52]   Mao K, Zhou Z L, Han S , et al. A Novel biosensor based on Au@Ag core-shell nanoparticles for sensitive detection of methylamphetamine with surface enhanced raman scattering. Talanta, 2018,190:263-268.
doi: 10.1016/j.talanta.2018.07.071 pmid: 30172508
[53]   Shao B Y, Ma X Y, Zhao S , et al. Nanogapped Au (core), @Au-Ag (shell), structures coupled with Fe3O4, magnetic nanoparticles for the detection of ochratoxin A. Analytica Chimica Acta, 2018,1033:165-172.
doi: 10.1016/j.aca.2018.05.058 pmid: 30172322
[54]   Tang J J, Xie J W, Shao N S , et al. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis, 2010,27(7):1303-1311.
doi: 10.1002/elps.200500489 pmid: 16518777
[55]   Alsager O A, Kumar S, Willmott G R , et al. Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. Biosensors and Bioelectronics, 2014,57:262-268.
doi: 10.1016/j.bios.2014.02.004 pmid: 24594593
[1] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[2] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[3] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[4] HE Min-yu, RAN Hai-tao. Aptamer Conjugated Nanomaterials for Targeted Cancer Therapeutics[J]. China Biotechnology, 2015, 35(4): 86-91.
[5] TANG De-ping, MAO Ai-hong, WANG Fang, ZHANG Hong, WANG Li, LIAO Shi-qi. Targeted Delivery of siRNA Mediated by Aptamer Modified Liposome[J]. China Biotechnology, 2015, 35(1): 54-60.
[6] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[7] ZHOU Ni, CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of An Electrochemical Aptasensor Basic on the ssDNA Aptamer of Ractopamine[J]. China Biotechnology, 2014, 34(1): 42-49.
[8] CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of an Aptasensor for Electrochemical Detection of Tetracycline[J]. China Biotechnology, 2013, 33(11): 56-62.