Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 13-22    DOI: 10.13523/j.cb.2103030
    
Construction and Biological Characteristics of ClpC and ClpX Knock-down Strains in Mycobacterium smegmatis
BAI Jia-cheng1,CHI Ming-zhe1,HU Ya-wen1,HAO Meng2,ZHANG Xue-lian1,**()
1 State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China
2 The Fourth Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
Download: HTML   PDF(1345KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Protein homeostasis through protein quality control is critical for bacterial growth and adaptation to host immune stress. The Clp protease plays an important role in protein degradation and homeostasis in Mycobacterium tuberculosis. There are two proteins in the Clp protease that are responsible for recognizing unfolding substrate proteins:ClpC and ClpX. Then unfoled substract is transferred into the chamber of ClpP, where proteolysis is carried out by protease. In order to explore the respective functional characteristics of ClpC and ClpX in mycobacterium,Mycobacterium smegmatis was selected as the experimental strain, and knockdown strains of ClpC and ClpX were constructed successfully by the CRISPRi method. The results showed that the ClpC and ClpX knockdown strains showed significant growth phenotypes differences compared with wild Mycobacterium smegmatis. Low expression of both ClpC and ClpX severely affected the growth of Mycobacterium smegmatis. ClpC low expression resulted in the loss of biofilm formation ability of the strain, while that of ClpX caused incomplete cell wall and bacterial filamentation indicating that ClpC and ClpX may have different physiological functions in mycobacterium.



Key wordsMycobacterium smegmatis      ClpC      ClpX     
Received: 15 March 2021      Published: 06 July 2021
ZTFLH:  Q93  
Corresponding Authors: Xue-lian ZHANG     E-mail: xuelianzhang@fudan.edu.cn
Cite this article:

BAI Jia-cheng,CHI Ming-zhe,HU Ya-wen,HAO Meng,ZHANG Xue-lian. Construction and Biological Characteristics of ClpC and ClpX Knock-down Strains in Mycobacterium smegmatis. China Biotechnology, 2021, 41(6): 13-22.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103030     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/13

Name Sequence(5'-3') Use
Sg-clpC-F GGGAGAGCGCGTCGTCGTCGCCGAA the forward sgRNA for clpC knock down
Sg-clpC-R AAACTTCGGCGACGACGACGCGCTC the reverse sgRNA for clpC knock down
Sg-clpX-F GGGAGACCTGCTTTTGGCTCTTCCCA the forward sgRNA for clpX knock down
Sg-clpX-R AAACTGGGAAGAGCCAAAAGCAGGTC the reverse sgRNA for clpX knock down
PLJR962-F TTCCTGTGAAGAGCCATTGATAATG the primer for recombinant PLJR962 plasmid sequence
q-sigA-F CGTCCGGCGACTTCGTGT the forward primer for sigA qPCR
q-sigA-R TGGCCAGCTCCACCTCTTCT the reverse primer for sigA qPCR
q-clpC-F GAAGGCCCACCAGGAGATCT the forward primer for clpC qPCR
q-clpC-R TCGAGATGTCGGACGTGCCGA the reverse primer for clpC qPCR
q-clpX-F GGACTCCGCCAAGCGGAC the forward primer for clpX qPCR
q-clpX-R TCTGCGCCAGGTAGGTCTTG the reverse primer for clpX qPCR
Table 1 Oligonucleotides used in this study
ClpX ClpC ClpA ClpP HslUV Lon
M.tb clpX clpC1 clpC2 clpP1 clpP2
M.sm clpX clpC clpP1 clpP2 Lon
M.m clpX clpC1 clpC2 clpP1 clpP2 Lon
E.coli clpX clpA clpP HslUV Lon
Table 2 Proteases encoding genes in different bacterial species
Fig.1 Construction and DNA sequencing of recombinant pLJR962 plasmids (a) M:10 000 bp marker; Lane 1:pLJR92 plasmid; Lane2:Digestion product of pLJR962 plasmid by BsmB I (b) Result of DNA sequencing of the recombinant pLJR962-clpC plasmid (c) Result of DNA sequencing of the recombinant pLJR962-clpX plasmid
Fig.2 Verification of Msm-ΔclpC(KD) and Msm-ΔclpX(KD) strains at the transcriptional level (a) Relative clpC expression of Msm-ΔclpC(KD) strain was decreased compared with Msm∷PLJR962 strain (b) RelativeclpX expression ofMsm-ΔclpX(KD) strain was decreased compared with Msm∷PLJR962 strain All strains were cultured in 7H9-OADC medium with 100 ng/mL ATc. The data presented are expressed as the mean (±s.e.m). Statistical significance was determined usingt-test, *** Represented P<0.001
Fig.3 Growth of Msm-ΔclpC(KD) and Msm-ΔclpX(KD) strains on solid plate (a) 7H10-OADC plate without ATc (b) 7H10-OADC plate with 100 ng/mL ATc. The first line named 0.1 represents the cell density of OD 600=0.1, approximately 107 cells/mL. 2.5 μL bacteria at different density were injected on every grid
Fig.4 Growth curves of Msm-ΔclpC(KD) and Msm-ΔclpX(KD) strains (a) Growth curve of Msm-ΔclpC(KD) in 7H9-OADC medium with or without 100 ng/mL ATc (b) Growth curve ofMsm-ΔclpX(KD) in 7H9-OADC medium with or without 100 ng/mL ATc
Fig.5 Colony morphology of Msm-ΔclpC(KD) and Msm-ΔclpX(KD) strains All strains were plated on 7H10-OADC medium with 100 ng/mL ATc
Fig. 6 Biofilm formation of Msm-ΔclpC(KD) and Msm-ΔclpX(KD) strains
Fig.7 Cell morphology of Msm-ΔclpC(KD) and Msm-ΔclpX(KD) strains
[1]   World Health Organization. Global tuberculosis report 2020. World Health Organization, 2020. [2021-04-10].https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf.
[2]   Gur E, Biran D, Ron E Z. Regulated proteolysis in Gram-negative bacteria - how and when? Nature Reviews Microbiology, 2011, 9(12):839-848.
doi: 10.1038/nrmicro2669
[3]   Olivares A O, Baker T A, Sauer R T. Mechanistic insights into bacterial AAA plus proteases and protein-remodelling machines. Nature Reviews Microbiology, 2016, 14(1):33-44.
[4]   Gottesman S. Proteases and their targets in Escherichia coli. Annual Review of Genetics, 1996, 30:465-506.
doi: 10.1146/annurev.genet.30.1.465
[5]   Martin A, Baker T A, Sauer R T. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature, 2005, 437(7062):1115-1120.
doi: 10.1038/nature04031
[6]   Akopian T, Kandror O, Raju R M, et al. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. The EMBO Journal, 2012, 31(6):1529-1541.
doi: 10.1038/emboj.2012.5 pmid: 22286948
[7]   Neuwald A F, Aravind L, Spouge J L, et al. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Research, 1999, 9(1):27-43.
[8]   Ribeiro-Guimarães M L, Pessolani M C V. Comparative genomics of mycobacterial proteases. Microbial Pathogenesis, 2007, 43(5-6):173-178.
doi: 10.1016/j.micpath.2007.05.010
[9]   Griffin J E, Gawronski J D, Dejesus M A, et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathogens, 2011, 7(9):e1002251. DOI: 10.1371/journal.ppat.1002251.
doi: 10.1371/journal.ppat.1002251
[10]   Sassetti C M, Boyd D H, Rubin E J. Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 2003, 48(1):77-84.
doi: 10.1046/j.1365-2958.2003.03425.x
[11]   Sassetti C M, Rubin E J. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22):12989-12994.
[12]   Schmitt E K, Riwanto M, Sambandamurthy V, et al. The natural product cyclomarin killsMycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angewandte Chemie (International Ed in English), 2011, 50(26):5889-5891.
doi: 10.1002/anie.v50.26
[13]   Gao W, Kim J Y, Anderson J R, et al. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrobial Agents and Chemotherapy, 2015, 59(2):880-889.
doi: 10.1128/AAC.04054-14
[14]   Gavrish E, Sit C S, Cao S G, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chemistry & Biology, 2014, 21(4):509-518.
doi: 10.1016/j.chembiol.2014.01.014
[15]   Rock J M, Hopkins F F, Chavez A, et al. Programmable transcriptional repression in Mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2:16274.
doi: 10.1038/nmicrobiol.2016.274
[16]   Knipfer N, Seth A, Roudiak S G, et al. Species variation in ATP-dependent protein degradation: protease profiles differ between Mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene, 1999, 231(1-2):95-104.
pmid: 10231573
[17]   Benaroudj N, Raynal B, Miot M, et al. Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2. BMC Biochemistry, 2011, 12:61.
doi: 10.1186/1471-2091-12-61 pmid: 22132756
[18]   Schmitz K R, Sauer R T. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase. Molecular Microbiology, 2014, 93(4):617-628.
doi: 10.1111/mmi.12694 pmid: 24976069
[19]   Frees D, Savijoki K, Varmanen P, et al. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Molecular Microbiology, 2007, 63(5):1285-1295.
doi: 10.1111/mmi.2007.63.issue-5
[20]   Gur E, Ottofueling R, Dougan D A. Machines of destruction - AAA+ Proteases and the adaptors that control them. Regulated Proteolysis in Microorganisms, 2013, 66:3-33. DOI: 10.1007/978-94-007-5940-4_1.
[21]   Frees D, Gerth U, Ingmer H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. International Journal of Medical Microbiology, 2014, 304(2):142-149.
doi: 10.1016/j.ijmm.2013.11.009
[22]   Raju R M, Unnikrishnan M, Rubin D H F, et al. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathogens, 2012, 8(2):e1002511.
doi: 10.1371/journal.ppat.1002511
[23]   DeJesus M A, Gerrick E R, Xu W Z, et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio, 2017, 8(1):e02133-e02116.
[24]   Kansal R G, Gomez-Flores R, Mehta R T. Change in colony morphology influences the virulence as well as the biochemical properties of the Mycobacterium avium complex. Microbial Pathogenesis, 1998, 25(4):203-214.
doi: 10.1006/mpat.1998.0227
[25]   Yamazaki Y, Danelishvili L, Wu M, et al. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cellular Microbiology, 2006, 8(5):806-814.
doi: 10.1111/cmi.2006.8.issue-5
[26]   Aldridge B B, Fernandez-Suarez M, Heller D, et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science, 2012, 335(6064):100-104.
doi: 10.1126/science.1216166
[27]   Camberg J L, Hoskins J R, Wickner S. ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26):10614-10619.
[28]   Sass P, Josten M, Famulla K, et al. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. PNAS, 2011, 108(42):17474-17479.
doi: 10.1073/pnas.1110385108
[29]   Silber N, Pan S, Schäkermann S, et al. Cell division protein FtsZ is unfolded for N-terminal degradation by antibiotic-activated ClpP. mBio, 2020, 11(3):e01006-01020. DOI: 10.1128/mbio.01006-20.
[30]   Gopal P, Sarathy J P, Yee M, et al. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nature Communications, 2020, 11(1):1661.
doi: 10.1038/s41467-020-15516-1
[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[3] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[4] QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model[J]. China Biotechnology, 2020, 40(11): 67-72.
[5] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[6] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[7] SONG Yi-mei,JIA Xiu-wei,LI Shu-biao,GAO Cui-juan. Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton[J]. China Biotechnology, 2020, 40(9): 77-86.
[8] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[9] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[10] GUO Le,WANG Shu-e,HE Meng,ZHANG Fan,LIU Hong-peng,LIU Kun-mei. Expression and Immunological Properties of Multivalent Epitope Vaccine CWAE Against Helicobacter pylori[J]. China Biotechnology, 2019, 39(12): 1-8.
[11] FANG Yuan,ZHANG Tong-wei,CAO Chang-qian,TIAN Jie-sheng,LIN Wei. Diversity and Applications of Magnetotactic Bacteria[J]. China Biotechnology, 2019, 39(12): 73-82.
[12] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[13] Ya-nan YANG,Chao SUN,Hao-lin CUI,Xin ZHAO. Effect of Mutation of M145F / F146M on the Photocycle of Photoreceptors Bacteriorhodopsin and Archaerhodopsin 4[J]. China Biotechnology, 2019, 39(1): 21-30.
[14] Yu-shuai LIU,Jie ZHANG,Jin ZHONG,Jing LI,Li-qiang MENG,Shu-mei ZHANG. Isolation and Identification of Antibacterial Lipopeptides Fengycin Produced by Bacillus amyloliquefaciens TF28 and Its Anti-fungal Mechanism Studies[J]. China Biotechnology, 2018, 38(10): 20-29.
[15] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.