Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 92-99    DOI: 10.13523/j.cb.20180812
    
Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth
Yue ZHAO1,Hao WU1,Jian-jun QIAO1,2,**()
1. School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
2. Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(788KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cell wall can maintain the shape and integrity of cell and resist internal expansion pressure during bacterial growth.The synthesis, division, regeneration, and recycling of cell wall are closely related to bacterial growth and the response to environmental stress. At present, the mechanism of cell wall growth, how to regulate cell wall growth and how to coordinate with other cellular processes remain largely unknown.The regulation mechanism of cell wall is very important for understanding the function of bacterial cell wall, determining the action of new drugs and developing the new generation of treatment methods. In this review, the bacterial regulatory mechanism of cell wall growth is summerized and the mechanisms of the scaffolding proteins, transcriptional regulators as well as small non-coding RNA and the protein-protein interaction to control the synthesis of cell wall, cell division and stress response are highlighted. In addition, the application of cell wall regulatory mechanism in the development of antibacterial drugs is summed up, and the future research direction is proposed.



Key wordsCell wall      Scaffolding proteins      Regulator      sRNA      Protein-protein interaction     
Received: 13 April 2018      Published: 11 September 2018
ZTFLH:  Q935  
Corresponding Authors: Jian-jun QIAO     E-mail: jianjunq@tju.edu.cn
Cite this article:

Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth. China Biotechnology, 2018, 38(8): 92-99.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180812     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/92

Fig.1 The regulatory mechanisms of bacterial cell wall
Fig.2 Peptidoglycan complex composed of scaffold proteins.
[1]   Johnson J W, Fisher J F, Mobashery S . Bacterial cell-wall recycling. Annals of the New York Academy of Sciences, 2013,1277(1):54-75.
doi: 10.1111/j.1749-6632.2012.06813.x
[2]   Jousselin A, Kelley W L, Barras C , et al. The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance. Antimicrobial Agents & Chemotherapy, 2013,57(7):3283-3292.
[3]   Sobhanifar S, King D T, Strynadka N C . Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Current Opinion in Structural Biology, 2013,23(5):695-703.
doi: 10.1016/j.sbi.2013.07.008 pmid: 23910891
[4]   Hao P, Liang D, Cao L , et al. Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall. Applied Microbiology & Biotechnology, 2017,101(15):6137-6153.
[5]   Chapotchartier M P, Kulakauskas S . Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 2014,13(S1):1-23.
doi: 10.1186/1475-2859-13-1
[6]   Harris L K, Theriot J A . Relative rates of surface and volume synthesis set bacterial cell size. Cell, 2016,165(6):1479-1492.
doi: 10.1016/j.cell.2016.05.045 pmid: 27259152
[7]   Typas A, Banzhaf M, Gross C A , et al. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 2012,10(2):123-136.
doi: 10.1038/nrmicro2677 pmid: 5433867
[8]   Ojima I, Kumar K, Awasthi D , et al. Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorganic & Medicinal Chemistry, 2014,22(18):5060-5077.
doi: 10.1016/j.bmc.2014.02.036 pmid: 4156572
[9]   Wang H, Xie L, Luo H , et al. Bacterial cytoskeleton and implications for new antibiotic targets. Journal of Drug Targeting, 2015,24(5):392-398.
doi: 10.3109/1061186X.2015.1095195 pmid: 26548775
[10]   Barreteau H, Kovac A, Boniface A, et al. Cytoplasmic steps of peptidoglycan biosynthesis . Fems Microbiology Reviews, 2008,32(2):168-207.
doi: 10.1111/j.1574-6976.2008.00104.x pmid: 18266853
[11]   Lovering A L, Safadi S S, Strynadka N C . Structural perspective of peptidoglycan biosynthesis and assembly. Annual Review of Biochemistry, 2012,81(7):451-478.
doi: 10.1146/annurev-biochem-061809-112742 pmid: 22663080
[12]   Ruiz N . Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(40):15553-15557.
doi: 10.1073/pnas.0808352105
[13]   Sauvage E, Kerff F, Terrak M , et al. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. Fems Microbiology Reviews, 2008,32(2):234-258.
doi: 10.1111/j.1574-6976.2008.00105.x pmid: 18266856
[14]   Macheboeuf P, Contrerasmartel C, Job V , et al. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. Fems Microbiology Reviews, 2006,30(5):673-691.
doi: 10.1111/j.1574-6976.2006.00024.x pmid: 16911039
[15]   Daniel R A, Errington J . Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell, 2003,113(6):767-776.
doi: 10.1016/S0092-8674(03)00421-5
[16]   Shi H, Bratton B P, Gitai Z , et al. How to build a bacterial cell: MreB as the foreman of E.coli construction. Cell, 2018,172(6):1294-1305.
doi: 10.1016/j.cell.2018.02.050 pmid: 29522748
[17]   Van F D E, Izoré T, Bharat T A , et al. Bacterial actin MreB forms antiparallel double filaments. Elife, 2014,3(3):e02634.
doi: 10.7554/eLife.02634 pmid: 24843005
[18]   Kawai Y, Asai K, Errington J . Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Molecular Microbiology, 2009,73(4):719-731.
doi: 10.1111/mmi.2009.73.issue-4
[19]   Kruse T, Bork-Jensen J, Gerdes K . The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Molecular Microbiology, 2005,55(1):78-89.
doi: 10.1111/j.1365-2958.2004.04367.x pmid: 15612918
[20]   Ent F V D, Johnson C M, Persons L , et al. Bacterial actin MreB assembles in complex with cell shape protein RodZ. Embo Journal, 2010,29(6):1081-1090.
doi: 10.1038/emboj.2010.9 pmid: 20168300
[21]   Morgenstein R M, Bratton B P, Nguyen J P , et al. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(40):12510-12515.
doi: 10.1073/pnas.1509610112 pmid: 26396257
[22]   Ursell T S, Nguyen J, Monds R D , et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(11):e1025.
doi: 10.1073/pnas.1317174111
[23]   Aarsman M E, Piette A, Fraipont C , et al. Maturation of the Escherichia coli divisome occurs in two steps. Molecular Microbiology, 2005,55(6):1631-1645.
doi: 10.1111/j.1365-2958.2005.04502.x pmid: 15752189
[24]   Aaron M, Charbon G, Hubert Lam , et al. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Molecular Microbiology, 2007,64(4):938-952.
doi: 10.1111/mmi.2007.64.issue-4
[25]   Rismondo J, Cleverley R M, Lane H V , et al. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins. Molecular Microbiology, 2015,99(5):978-998.
[26]   Cleverley R M, Rismondo J, Lockhart-Cairns M P , et al. Subunit arrangement in GpsB, a regulator of cell wall biosynthesis. Microbial Drug Resistance, 2016,22(6):446-460.
doi: 10.1089/mdr.2016.0050 pmid: 51118767
[27]   Claessen D, Emmins R, Hamoen L W , et al. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Molecular Microbiology, 2008,68(4):1029-1046.
doi: 10.1111/j.1365-2958.2008.06210.x
[28]   Scheffers D J, Errington J . PBP1 is a component of the Bacillus subtilis cell division machinery. Journal of Bacteriology, 2004,186(15):5153-5156.
doi: 10.1128/JB.186.15.5153-5156.2004 pmid: 835841
[29]   Oliva M A, Halbedel S, Freund S M , et al. Features critical for membrane binding revealed by DivIVA crystal structure. Embo Journal, 2010,29(12):1988-2001.
doi: 10.1038/emboj.2010.99
[30]   Van B S, Celik I N, Kaval K G , et al. Protein-protein interaction domains of Bacillus subtilis DivIVA. Journal of Bacteriology, 2013,195(5):1012-1021.
doi: 10.1128/JB.02171-12 pmid: 3571322
[31]   Fadda D, Santona A , D’Ulisse V, et al. Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. Journal of Bacteriology, 2007,189(4):1288-1298.
doi: 10.1128/JB.01168-06
[32]   Lenarcic R, Halbedel S, Visser L , et al. Localisation of DivIVA by targeting to negatively curved membranes. Embo Journal, 2009,28(15):2272-2282.
doi: 10.1038/emboj.2009.129 pmid: 2690451
[33]   Gamba P, Veening J W, Saunders N J , et al. Two-step assembly dynamics of the Bacillus subtilis divisome. Journal of Bacteriology, 2009,191(13):4186-4194.
doi: 10.1128/JB.01758-08 pmid: 19429628
[34]   Stahlberg H, Kutejová E, Muchová K , et al. Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Molecular Microbiology, 2004,52(5):1281-1290.
doi: 10.1111/j.1365-2958.2004.04074.x
[35]   Dörr T, Alvarez L, Delgado F , et al. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2015,113(2):404-409.
[36]   Sun H, Yang Y, Xue T , et al. Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus, NCTC8325. BMC Microbiology, 2013,13(1):286-296.
doi: 10.1186/1471-2180-13-286
[37]   Bisicchia P, Noone D, Lioliou E , et al. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Molecular Microbiology, 2010,65(1):180-200.
doi: 10.1111/j.1365-2958.2007.05782.x pmid: 17581128
[38]   Botella E, Devine S K, Hubner S , et al. PhoR autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular PAS domain during the PhoPR-mediated phosphate limitation response of Bacillus subtilis. Molecular Microbiology, 2014,94(6):1242-1259.
doi: 10.1111/mmi.2014.94.issue-6
[39]   Bhavsar A P, Erdman L K, Schertzer J W , et al. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Journal of Bacteriology, 2004,186(23):7865-7873.
doi: 10.1128/JB.186.23.7865-7873.2004
[40]   Lange R, Hengge-Aronis R . Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. Journal of Bacteriology, 1991,173(14):4474-4481.
doi: 10.1128/jb.173.14.4474-4481.1991
[41]   Freire P, Moreira R N, Arraiano C M . BolA inhibits cell elongation and regulates MreB expression levels. Journal of Molecular Biology, 2009,385(5):1345-1351.
doi: 10.1016/j.jmb.2008.12.026
[42]   Eraso J M, Markillie L M, Mitchell H D , et al. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. Journal of Bacteriology, 2014,196(11):2053-2066.
doi: 10.1128/JB.01370-13 pmid: 24659771
[43]   Mariscotti J F, Quereda J J, García-Del P F , et al. The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin. International Journal of Medical Microbiology, 2014,304(3-4):393-404.
doi: 10.1016/j.ijmm.2014.01.003
[44]   Quereda J J, álvaro D. Ortega, Pucciarelli M G , et al. The Listeria Small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5'-UTR variant. Plos Genetics, 2014,10(10):e1004765.
doi: 10.1371/journal.pgen.1004765
[45]   Cayrol B, Fortas E, Martret C , et al. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integrative Biology Quantitative Biosciences from Nano to Macro, 2015,7(1):128-141.
doi: 10.1039/c4ib00102h pmid: 25407044
[46]   Tétart F, Bouché J P . Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA-Division does not require a fixed number of FtsZ molecules. Molecular Microbiology, 1992,6(5):615-620.
doi: 10.1111/j.1365-2958.1992.tb01508.x
[47]   Khan M A, Göpel Y, Milewski S , et al. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Frontiers in Microbiology, 2016,7:e1025.
[48]   H?ltje J V . Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiology and Molecular Biology Reviews, 1998,62(1):181-203.
[49]   Egan A J F, Jacob B, Inge V V , et al. Activities and regulation of peptidoglycan synthases. Philosophical Transactions of the Royal Society B Biological Sciences, 2015,370(1679):1-20.
doi: 10.1098/rstb.2015.0031 pmid: 4632607
[50]   Typas A, Banzhaf M, Van D B V S B , et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell, 2010,143(7):1097-1109.
doi: 10.1016/j.cell.2010.11.038 pmid: 3060616
[51]   Paradis-Bleau C, Markovski M, Uehara T , et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell, 2010,143(7):1110-1120.
doi: 10.1016/j.cell.2010.11.037 pmid: 21183074
[52]   Jean N L, Bougault C M, Lodge A , et al. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation. Structure, 2014,22(7):1047-1054.
doi: 10.1016/j.str.2014.04.017
[53]   Yin J, Sun Y, Mao Y , et al. PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis. Antimicrobial Agents & Chemotherapy, 2015,59(6):3357-3364.
[54]   Sathiyamoorthy K, Vijayalakshmi J, Tirupati B , et al. Structural analyses of the Haemophilus influenzae peptidoglycan synthase activator LpoA suggest multiple conformations in solution. Journal of Biological Chemistry, 2017,292(43):17626-17642.
doi: 10.1074/jbc.M117.804997
[55]   Gray A N, Egan A J, Veer I L V , et al. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife Sciences, 2015,4:e07118.
doi: 10.7554/eLife.07118
[56]   Greene N G, Fumeaux C, Bernhardt T G . Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2018,115(12):3150-3155.
doi: 10.1073/pnas.1717925115
[57]   Fraipont C, Alexeeva S, Wolf B , et al. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology, 2011,157(1):251-259.
doi: 10.1099/mic.0.040071-0
[58]   Mercer K L, Weiss D S . The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. Journal of Bacteriology, 2002,184(4):904-912.
doi: 10.1128/jb.184.4.904-912.2002
[59]   Bing L, Persons L, Lee L , et al. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Molecular Microbiology, 2015,95(6):945-970.
doi: 10.1111/mmi.12906
[60]   Pichoff S, Du S, Lutkenhaus J . The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Molecular Microbiology, 2015,95(6):971-987.
doi: 10.1111/mmi.12907
[61]   Grenga L, Rizzo A, Paolozzi L , et al. Essential and non-essential interactions in interactome networks: the Escherichia coli division proteins FtsQ-FtsN interaction. Environmental Microbiology, 2013,15(12):3210-3217.
doi: 10.1111/emi.2013.15.issue-12
[62]   Müller P, Ewers C, Bertsche U , et al. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. Journal of Biological Chemistry, 2007,282(50):36394-36402.
doi: 10.1074/jbc.M706390200
[63]   Vollmer W, Joris B, Charlier P , et al. Bacterial peptidoglycan (murein) hydrolases. Fems Microbiology Reviews, 2008,32(2):259-286.
doi: 10.1111/j.1574-6976.2007.00099.x
[64]   Uehara T, Parzych K R, Dinh T , et al. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. Embo Journal, 2010,29(8):1412-1422.
doi: 10.1038/emboj.2010.36 pmid: 20300061
[65]   Uehara T, Dinh T, Bernhardt T G . LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. Journal of Bacteriology, 2009,191(16):5094-5107.
doi: 10.1128/JB.00505-09
[66]   Clarke C A, Scheurwater E M, Clarke A J . The vertebrate lysozyme inhibitor ivy functions to inhibit the activity of lytic transglycosylase. Journal of Biological Chemistry, 2010,285(20):14843-14847.
doi: 10.1074/jbc.C110.120931
[67]   Gautam A, Vyas R, Tewari R . Peptidoglycan biosynthesis machinery: a rich source of drug targets. Critical Reviews in Biotechnology, 2011,31(4):295-336.
doi: 10.3109/07388551.2010.525498 pmid: 21091161
[68]   Michalopoulos A S, Livaditis I G, Gougoutas V . The revival of fosfomycin. International Journal of Infectious Diseases, 2011,15(11):e732.
doi: 10.1016/j.ijid.2011.07.007
[69]   Bush K . Introduction to antimicrobial therapeutics reviews: the bacterial cell wall as an antimicrobial target. Annals of the New York Academy of Sciences, 2013, 1277(1): V-VII.
doi: 10.1111/nyas.12025
[70]   Haranahalli K, Tong S, Ojima I . Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorganic & Medicinal Chemistry, 2016,24(24):6354-6369.
[71]   Hurley K A, Santos T M, Nepomuceno G M , et al. Targeting the bacterial division protein FtsZ. Journal of Medicinal Chemistry, 2016,59(15):6975-6998.
doi: 10.1021/acs.jmedchem.5b01098 pmid: 26756351
[72]   Panda D, Bhattacharya D, Gao Q H , et al. Identification of agents targeting FtsZ assembly. Future Medicinal Chemistry, 2016,8(10):1111-1132.
doi: 10.4155/fmc-2016-0041 pmid: 27284850
[1] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[2] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[3] Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance[J]. China Biotechnology, 2018, 38(7): 89-93.
[4] Rong ZHAO,Han-yu CHEN,Chun HUANG,Xiao-lian ZHANG,Qin PAN. Construction, Expression and Identification of Recombinant Fusion Protein Specifically Targeting B Cells and Binding to IL-10[J]. China Biotechnology, 2018, 38(2): 1-6.
[5] DAI Jian-lu, LU Zhi-li, LIN Ling, WANG Yi-guang, HE Wei-qing. Construction of the Isomycin I High-yield Strain by Introducing a Heterologous Positive Regulatory Gene acyB2[J]. China Biotechnology, 2017, 37(3): 65-72.
[6] ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(6): 92-99.
[7] ZHANG Jian, WU Hao, LI Yan-ni, QIAO Jian-jun. Advances in Research on Small Non-coding RNAs of Gram-positive Bacteria[J]. China Biotechnology, 2016, 36(10): 106-114.
[8] XU Jun, LIU Cui-cui, DING De-wu, SUN Xiao, XIE Jian-ming. Reconstruction and Analysis of the Gene Regulatory Networks of Shewanella onedensis MR-1[J]. China Biotechnology, 2014, 34(11): 42-46.
[9] YAO Yuan-feng, ZHAO Ying, ZHAO Guang-rong. Artificial sRNAs Silencing csrA to Optimize the Production of L-tyrosine in Escherichia coli[J]. China Biotechnology, 2013, 33(8): 61-66.
[10] HUANG Xin-yuan, FAN Hong-bo, ZOU Li-ping. Progress in Protein Fragment Complementation Assay[J]. China Biotechnology, 2013, 33(11): 99-105.
[11] LI Jia-ping, ZHANG Xian-wen, CHEN Xin-bo. The Co-occurrence of Transcription Factor Binding Sites[J]. China Biotechnology, 2012, 32(09): 87-94.
[12] LI Jie-ping, ZHUANG Qin-ren, LAN Xiao-peng, ZENG Guo-bin, LUO Xiao-feng. PES1 Interacts with Estrogen Receptor[J]. China Biotechnology, 2012, 32(08): 14-18.
[13] ZHU Kuan-peng, ZHAO Shu-jin. Double-stranded RNA-mediated Gene Silencing and Over-expression of FmSTS in Polygonum multiflorum Thunb Hairy Roots[J]. China Biotechnology, 2012, 32(08): 41-48.
[14] GAO Yan-hui, HUANG Chun-hong, ZHU Yu-qiu, TONG Zai-kang. Progress on Plant Anthocyanin Biosynthesis and Regulation[J]. China Biotechnology, 2012, 32(08): 94-99.
[15] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.