Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (9): 77-86    DOI: 10.13523/j.cb.2004055
    
Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton
SONG Yi-mei1,JIA Xiu-wei2,LI Shu-biao2,GAO Cui-juan1,**()
1 School of Life Science, Linyi University, Linyi 276000, China
2 Shandong Fufeng Fermentation Co., Ltd, Linyi 276000, China
Download: HTML   PDF(3887KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Yarrowia lipolytica is an unconventional yeast with the ability to produce a variety of products using diversified substrates. It can survive in diverse environment and is easy to cultivation. It is generally regarded as safe. Y. lipolytica was considered as a new biotechnological strain that has attracted increasing attentions in the scientific research field. In recent years, an emerging industrial technology, industrial biotechnology has developed rapidly worldwide due to its advantages of green, recycling and low carbon. The characteristics of the Y. lipolytica, as well its application in producing high-value compounds were reviewed. Meanwhile, the characteristics and research status of industrial biotechnology were described and the difference between industrial biotechnology and traditional chemical technology was listed. Finally, the application prospect of industrial biotechnology in Y. lipoiytica was discussed.



Key wordsYarrowia lipolytica      Metabolic production      Industrial biotechnology     
Received: 29 April 2020      Published: 12 October 2020
ZTFLH:  Q939.97  
Corresponding Authors: Cui-juan GAO     E-mail: gaocuijuan@lyu.edu.cn
Cite this article:

SONG Yi-mei,JIA Xiu-wei,LI Shu-biao,GAO Cui-juan. Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton. China Biotechnology, 2020, 40(9): 77-86.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2004055     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I9/77

项目 工业生物技术 传统化工技术
优点 原料为可再生的生物质资源,可避免资源枯竭;一般以酶为催化剂,产率较高;
一般无副产物产生或仅产生少量副产物;
没有毒害废弃物产生,减少了环境破坏;
生产条件一般为常温、常压,易于操作
底物为石油、煤等化石燃料,造价低廉;
产业链较完善
缺点 底物价格相对昂贵,生产成本较高;
消毒灭菌步骤繁琐且消耗大量能源和水资源;产业链暂时不完善
原料为不可再生的化石能源,易造成资源短缺;
一般以重金属为催化剂,有毒;产率低;
产生大量副产物;
生产条件常为高温高压、操作步骤多、工艺复杂
Table 1 Comparative analysis of industrial biotechnology and traditional chemical industry technology
Fig.1 Dimorphism of Yarrowia lipolytica
Fig.2 Basic metabolic pathways of Yarrowia lipolytica
Fig.3 A synthetic pathway of erythritol from Yarrowia lipolytica
Fig.4 Cytoplasmic MVA pathway and plasmid MEP pathway
[1]   李德茂, 陈吴西, 郭蔚, 等. 工业生物发酵过程模拟:进展与发展趋势. 生物工程学报, 2019,35(10):1974-1985.
[1]   Li D M, Chen W X, Guo W, et al. Simulation of industrial fermentation: current status and future perspectives. Journal of Bioengineering, 2019,35(10):1974-1985.
[2]   杜鹤童, 赵倚晴, 陈金春, 等. 基于嗜盐微生物合成生物学的下一代工业生物技术. 生命科学, 2019,31(0):385-390.
[2]   Du H T, Zhao Y Q, Chen J C, et al. Next generation industrial biotechnology based on synthetic biology of halophiles. Life Science, 2019,31(4):385-390.
[3]   耿红冉, 董华, 陈洁君, 等. 我国工业生物技术科研发展路径分析. 生物加工过程, 2019,17(6):551-555.
[3]   Geng H R, Dong H, Chen J J, et al. Development approach review of industrial biotechnology research in China. Chinese Journal of Bioprocess Engineering, 2019,17(6):551-555.
[4]   Yin J, Chen J C, Wu Q, et al. Halophiles, coming stars for industrial biotechnology. Pubmed, 2015,33(7):1433-1442.
[5]   陈方, 丁陈君, 陈云伟, 等. 工业生物技术领域国际发展态势及我国发展前景展望. 世界科技研究与发展, 2018,40(02):133-148.
[5]   Chen F, Ding C J, Chen Y W, et al. A study on global trends of industrial biotechnology and the perspectives in China. World Science-Technology R&D, 2018,40(02):133-148.
[6]   郭智臣. 生物基材料聚乳酸技术或可解决“白色污染”. 化学推进剂与高分子材料, 2018,16(2):46.
[6]   Guo Z C. Polylactic acid technology as a bio-based material may solve white pollution. Chemical Propellant and Polymer Materials, 2018,16(2):46.
[7]   贾会坤, 张奕南, 冯进辉, 等. 近期工业微生物关键技术和应用. 化学进展, 2007,19(Z2):1223-1228.
[7]   Jia H K, Zhang Y N, Feng J H, et al. Latest key technologies and applications of industrial microbiology. Progress in Chemistry, 2007,19(Z2):1223-1228.
[8]   赵禹, 赵雅坤, 刘士琦, 等. 非常规酵母的分子遗传学及合成生物学研究进展. 微生物学报 [2020-06-30]. http://kns.cnki.net/kcms/detail/11.1995.q.20200117.0917.002.html.
[8]   Zhao Y, Zhao Y K, Liu S Q, et al. Advances in molecular genetics and synthetic biology tools in unconventional yeasts. Journal of Microbiology [2020-06-30]. http://kns.cnki.net/kcms/detail/11.1995.q.20200117.0917.002.html.
[9]   张付涛, 陈凯丽, 王东月, 等. 解脂耶氏酵母产脂肪酶的研究进展. 中国酿造, 2019,38(4):17-20.
[9]   Zhang F T, Chen K L, Wang D Y, et al. Research progress of lipase production by Yarrowia lipolytica. China Brewing, 2019,38(4):17-20.
[10]   李运清. 解脂耶氏酵母研究进展. 济宁医学院学报, 2015,38(1):8-13
[10]   Li Y Q. Advances in studies of Yarrowia lipolytica. Journal of Jining Medical College, 2015,38(1):8-13.
[11]   王瑞瑞. 转录调控因子YlSfl1在解脂耶氏酵母二型性转换中的功能研究. 武汉: 武汉大学, 2017.
[11]   Wang R R. Characterization of the function of the transcription regulator YlSfl1 in dimorphic transition in the yeast Yarrowia lipolytica. Wuhan: Wuhan University, 2017.
[12]   梁舒恒. TORC1-Sch9信号传递途径在解脂耶氏酵母二型性转换中的功能研究. 武汉: 武汉大学, 2017.
[12]   Liang S H. Role of the TORC1-Sch9 signaling pathway in the regulation of yeast-to-hypha transition in the yeast Yarrowia lipolytica. Wuhan: Wuhan University, 2017.
[13]   Dominique T, Jacqueline C, Stefaan D H, et al. Safety of chromium-enriched biomass of Yarrowia lipolytica as a novel food pursuant to Regulation ( EU ) 2015/2283. EFSA Journal, 2020,18(3):6005.
[14]   赵鹤云, 黄瑛, 杨江科, 等. 解脂耶氏酵母表达系统研究进展. 生物加工过程, 2008,6(3):10-16.
[14]   Zhao H Y, Huang Y, Yang J K, et al. Review of Yarrowia lipolytica expression system. Chinese Journal of Bioprocess Engineering, 2008,6(3):10-16.
[15]   崔志勇. 解脂耶氏酵母非同源基因组整合方法的建立及其在琥珀酸合成中的应用. 济南: 山东大学, 2019.
[15]   Cui Z Y. Establishment of homologous-independent genome integration in Yarrowia lipolytica and its application for succinic acid biosynthesis. Shandong: Shandong University, 2019.
[16]   王晖, 薛庆节, 杨媛媛, 等. 解脂耶氏酵母在食品工业中的应用. 食品与发酵工业, 2018,44(8):291-297.
[16]   Wang H, Xue Q J, Yang Y Y, et al. Application of Yarrowia lipolytica in food industry. Food and Fermentation Industries, 2018,44(8):291-297.
[17]   付莹, 王红权, 赵玉蓉. ɑ-酮戊二酸及其生理作用. 湖南饲料, 2017,1(5):31-33.
[17]   Fu Y, Wang H Q, Zhao Y R. ɑ - ketoglutarate and its physiological function. Journal of Hunan Feed, 2017,1(5):31-33.
[18]   魏易焓, 张姹, 束刚. α-酮戊二酸的生物学功能及分子机制研究进展. 中国畜牧杂志, 2020,2: 1-13. https://doi.org/10.19556/j.0258-7033.20191018-02.
[18]   Wei Y H, Zhang C, Shu G. Advances in the biological functions and molecular mechanisms of alpha-ketoglutaric acid. Chinese Journal of Animal Science, 2020,2: 1-13. https://doi.org/10.19556/j.0258-7033.20191018-02.
[19]   Otto C, Yovkova V, Aurich A, et al. Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of umarase and pyruvate carboxylase genes in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2012,95(4):905-917.
pmid: 22539024
[20]   于青林, 孟令莉, 霍海亮, 等. 重组解脂耶氏酵母发酵生产琥珀酸的条件优化. 食品与发酵工业, 2018,44(4):119-123.
[20]   Yu Q L, Meng L L, Huo H L, et al. Fermentation optimization of recombinant Yarrowia lipolytica for its succinic acid production. Food and Fermentation Industries, 2018,44(4):119-123.
[21]   Yuzbashev T V, Yuzbasheva E Y, Sobolevskaya T I, et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnology and Bioengineering, 2010,107(4):673-682.
pmid: 20632369
[22]   Gao C J, Yang X F, Wang H M, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. BioMed Central, 2016,9(1):179-189.
[23]   朱鑫. 衣康酸生物学功能的研究进展. 动物营养学报, 2020,32(3):998-1002.
[23]   Zhu X. Recent progress in biological functions of itaconic acid. Chinese Journal of Animal Nutrition, 2020,32(3):998-1002.
[24]   Blazeck J, Hill A, Jamoussi M, et al. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabolic Engineering, 2015,32(1):66-73.
[25]   Zhao C, Cui Z Y, Zhao X Y, et al. Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Pubmed, 2019,103(5):2181-2192.
[26]   王洛祺, 李鹏超, 黄明丽, 等. 糖醇在食品医药及农业领域的应用研究进展. 食品工业科技, 2019,40(7):337-340,345.
[26]   Wang L Q, Li P C, Huang M L, et al. Research progress in the application of sugar alcohol in food medicine and agriculture. Science and Technology of Food Industry, 2019,40(7):337-340,345.
[27]   郑景蕊, 贾新如, 宋静蕾, 等. 糖醇在食品工业中的应用研究. 现代食品, 2018,1(21):48-49,52.
[27]   Zheng J R, Jia X R, Song J L, et al. Application of sugar alcohol in food industry. Modern Food, 2018,1(21):48-49,52.
[28]   Beopoulos A, Haddouche R, Kabran P, et al. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Springer-Verlag, 2012,93(4):1523-1537.
[29]   Zhang H X, Howard G D, Narendra S. et al. Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica. John Wiley & Sons Ltd, 2012,29(1):25-38.
[30]   张怀渊. 底物供应对产油酵母Yarrowia lipolytica油脂积累影响机制. 无锡: 江南大学, 2015.
[30]   Zhang H Y. The influential mechanism of substrate supply on lipid accumulation in oleaginous yeast Yarrowia lipolytica. Jiangsu: Jiangnan University, 2015.
[31]   Fontanille P, Kumar V, Christophe G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Elsevier Ltd, 2012,114(1):443-447.
[32]   Wang Z P, Xu H M, Wang G Y, et al. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Elsevier B V, 2013,1831(4):675-682.
[33]   Beopoulos A, Mrozova Z, Thevenieau F, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Pubmed, 2008,74(24):7779-7789.
[34]   尹升明. 代谢工程改造耶罗维解脂耶氏酵母生产β-胡萝卜素研究. 上海: 上海医药工业研究院, 2017.
[34]   Yin S M. Study on production of β-Carotene by engineering of Yarrowia lipolytica. Shanghai: Shanghai Institute of Pharmaceutical Industry, 2017.
[35]   Xue Z X, Sharpe P L, Hong S P, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 2013,31(8):734-740.
[36]   倪丽娟. 基于脂肪酸氧化途径调控解脂耶氏酵母积累反10,顺12-共轭亚油酸的研究. 无锡: 江南大学, 2017.
[36]   Ni L J. The study on regulating t10,c12-conjugated linoleic acid accumulation in Yarrowia lipolytica based on fatty acid oxidation pathway. Jiangsu: Jiangnan University, 2017.
[37]   李敏. 重组耶氏解脂耶氏酵母合成反-10,顺-12-共轭亚油酸影响因素的研究. 无锡: 江南大学, 2014.
[37]   Li M. Study the factors affecting synthesis of trans10, cis12-CLA in recombinant Yarrowia lipolytica. Jiangsu: Jiangnan University, 2014.
[38]   赵媛, 王旭斌, 郑宁. 天然萜类化合物抗肿瘤作用的研究进展. 世界最新医学信息文摘, 2019,19(98):48-49.
[38]   Zhao Y, Wang X B, Zheng N. Research progress in antitumor effect of natural terpenoids. World Latest Medical Information Digest, 2019,19(98):48-49.
[39]   徐硕, 卢文玉. 谷氨酸棒状杆菌异源合成萜类化合物的研究进展. 中国生物工程杂志, 2019,39(6):91-96.
[39]   Xu S, Lu W Y. Progress of heterologous biosynthesis of terpenoids in engineered corynebacterium glutamicum. China Biotechnology, 2019,39(6):91-96.
[40]   刘梁. 表达多拷贝Thmg和Ggs1提高工程菌株解脂亚罗酵母YL-C1合成β-胡萝卜素. 西安:陕西师范大学, 2019.
[40]   Liu L. The expression of multiple copies of Thmg and Ggs1 increased the synthesis of carotene from YL-C1 of lipolygenic arrow-yeast strain. Shanxi: Shaanxi Normal University, 2019.
[41]   Matthäus F, Ketelhot M, Gatter M, et al. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 2014,80(5):1660-1669.
pmid: 24375130
[42]   Kildegaard K R, Adiego-Pérez B, Doménech B D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2017,2(4):287-294.
pmid: 29552653
[43]   Yang X, Nambou K, Wei L J, et al. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource Technology, 2016,216(1):1040-1048.
[44]   Cao X, Lv Y B, Chen J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnology for Biofuels, 2016,9(1):214-224.
[45]   Juszczyk P, Tomaszewska L, Kita A, et al. Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production. Bioresource Technology, 2013,137(1):124-131.
[46]   Bjarne H, Gerd M B, James M O, et al. Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L, fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture, 2012,364(1):39-47.
[1] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[4] CHEN Fang, DING Chen-jun, CHEN Yun-wei, ZHENG Ying, DENG Yong, XU Ping, YU Jian-rong, WU Lin-huan, MA Jun-cai, ZENG Yan, LIU Bin. A Study on the Trend and Prospective of Industrial Biotechnology in China[J]. China Biotechnology, 2016, 36(5): 1-11.
[5] GAO Jiao-qi, HAN Xi-tong, KONG Liang, YUAN Wen-jie, WANG Na, BAI Feng-wu. Application Progress of Kluyveromyces marxianus in the Industrial Biotechnology[J]. China Biotechnology, 2014, 34(2): 109-117.